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| .PseudoconVeXity under the Charnes-Cooper
N transformation
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Abstract

In [7] Charnes and Cooper reduce a linear fractional program to
a linear program with help of a suitable transformation of variables.
We show that this transformation preserves pseudoconvexity of a dif-
ferentiable function.
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1 Introduction

In this note we will show that the Charnes-Cooper transformation [7] as well
as a generalized version of it preserve the pseudoconvexity of a differentiable
function f. _

Such a result generalizes the previous one given by the authors in the
case where f is a twice differentiable function [16]. The result will be de-
rived by showing that a pseudomonotone gradient of a differentiable function
turns into a pseudomonotone gradient of the transformed function where the
Charnes-Cooper type transformation is applied to the function ( not to the
gradient). This implies the result of the paper since pseudomonotonicity of
the gradient corresponds to pseudoconvexity of a differentiable function [17].
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2 The Charnes-Cooper transformation

Consider the following transformation from R to R”

Az

T 2.1
y bT$+b0 ( )

defined on the set I' = {z € R : b7z + by > 0} where A is a nonsingular
matrix of order n, b € R" and by # 0. :
Lemma 2.1 The inverse of the transformation (2.1) is given by

bgA_ly

z= —ml—bTA—ly (2.2)
e = {yeR: —0 S} (2.3)
Ve SWEN Ty o '

_ _ T
F;Zroof From (2.1) we have A7y = prfo=, 0T A Yy = £ 2 =1 - ﬁ“_@, 50
that '

1 1 —pTAL
= Y (2.4)
bz +- bo . bo :
_ The thesis is achieved taking into account that bY z+by > O implies r_ﬁﬁ:l—y >
0 and that z = (b"x + by)A™ly. 0

Denote with J,, J, the Jacobian matrices of the transformation (2.1),.'(2.2),
respectively; from differential calculus rules, we have.

A bt
Jp = — _
" Frtbl  Foik (2.5)
be A1 ybT A1
gy = .
v bTA‘ly[ + 1 bTA‘ly] (2 6)
Let AJm(y) (Jy(z)) the Jacobian matrix J, (J,) evaluated at z = ——ﬂ—lf‘;}ﬁ;ly
(y = bT.E-T-bg )
The following lemma holds.
Lemma 2.2
i)
1 — b A1y
Ja) = T[A ~ yb"] (2.7)
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Jyiwy = (B + bo)[A™ +

i’i)JJm(y =1, JJ(m)=I.

Proof

i) (2.7) follows dzrectly from (2.5) substztutmg (2.4) and (2.2). In a similar
way (2.8) follows )

i) JyJoty) = 1 1y[‘[+ 1 lt)z”fx—lly] L2 A ly[A yb'] = :

=_[A 14 A~ lgngA—'] [A be] — ] — A- 1 bT+ A-lyp? AT AT LT

+ooTa T 1-bTA-Ty ~ ~ 1-bTA 1y .
- . ALysT A-lybT (b AT 1.7, (1T A" 1H A~ yb
=1-A lbe+1—bel‘1y i bT(A Tt = - A7+ - bTA) =1

~ In a analogous way it can be proved that JyJyw) = 1.

In the following we will utilize the following lemma.

Lemma 2.3 Letm zel, ygel* suchthatx—%%,mﬁ—l—%}fﬂ’—
We have
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(Z—a) = m(y“y) Ty (2.10)
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R — _ \T T
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Proof We have (T — x)*J7, = T7.J},y — a" T} ;. On the other hand:
I\ 1
-7 Ih = B (7 ”” 4)(AT — by ) (1 —bTA  y)y”
_ Ny T 1y T -1
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Consequently (fc—:n)T ) = %ﬁ}-——lﬂ[y —7 ( )TbyT—(_l—bTA”lg)yT] =

AT — T - (AT T + BT A ),

Since b7 A1 g=17 (A WTh, (2.9) is achieved.

Taking into account that the inverse of Jyy) is Jy, (2.10) follows.

 From (2.9), substituting T with x and = with Z, we obtain (z —2)TJT 0 =

1—%5(@ §)", which is equivalent to (2.11). Fmally, (2.1 2) follows takmg
into account that Ju(g) 18 the inverse of Jy. O



3 Pseudoconvexity under the Charnes-Cooper
transformation

Let f(z) be a differentiable real-valued function defined on an open and.
- convex subset S of R" and consider the function (y) cbtained applying
the previous Charnes- Cooper transformation to f(z). Obviously we have
Fla()) = ¥ly) and £(z) = B(u()).

By the differential calculus rules we have

V() = JIVe(y(z)), Vily) = IV F(z(y)). -

We recall that a function I is pseudomonotone on an open and convex set
¢ C R if and only if for every pair of distinct points v, w € C we have

(w—v)TF) > 0= (w—v)TF(w) > 0. (3.1)

The following theorem points out that the Charnes-Cooper transformation
preserves the pseudomonotonicity of the gradient of the function.

Theorem 3.1 V f(z) is pseudomonotone if and only if Vi(y) is pseudomnono-
tone.
Proof Assume the pseudomonotonicily of the gradient of f(x). We must
show that (§ — y)TV(y) > 0 implies (§ — y)TV4(g) > 0. Tuking into ac-
count Lemma (2.8) and it1) of Lemma (2.2), we have '
e r g we
@~ v)" Vo) = G~ ) VI (2() = Sra=iE — o) T, )V (@) =
T oa—1=
= %E%ﬁ-:l—g(:ﬁmm)irv f(x). Since %ﬁ > 0, the mequality (T—y) TV (y) >
0 implics (T — )TV f{x) > 0 so that, jor the pseudomonotonicity of V f(z),
we have (T — a:)TVf( } > 0. From (2.12) we have
- - - T A=lg _
(@ -3V (&) = S (5 —y) IV y(E) = Sranl (- y) VY (g), so
that (z — x)"Vf(£) > 0 implies (§ — y)" Vip(g) > 0 and the thesis follows.
Assume now the pseudomonotonicity of the gradient of ¥(y). We must prove -
that (Z — )TV f(x) > 0 implies (T — )"V F(Z) > 0. Taking into account
(2.10), we have '
(7—2)7V f(x) = 154 (7 —0)T TV £ (y(w)) = 2=t —y)TVU(y) ond
thus (Z<z)"V f(z) > 0 implies (§— y)TVW,D( } > 0; for the pseudomonotonic-
ity of V(y), we have (y YTV (F) > 0. Taking into account (2.11) we have
T
(§~y)" VYY) = 1St (@—a)" Tig V(@) = {55t —2) Ly AV £(@) =
T 1
e (3 = 2) 'V A(E). | |
Oonsequently, (7 — y)TV(H) > 0 implies
- (Z2—2)TVf(Z) > 0 and the thesis is complete.
- _



Corollary 3.1 The Charnes-Cooper transformation (2.1) preserves the pseu-

' doconwezity of a function f, that is f(z) is pseudoconvex if and only if ¥(y)
is pseudoconvez. '

Proof It is suﬁ‘iment to note that a function is pseudoconvex zf and only if
its gradient map is pseudomonotone.

Remark 3.1 While the pseﬂdoconvea:z’ty of a function is preserved under a
Charnes-Cooper transformation, the pseudomonotonicity of a map is not pre-
served wnder a Charnes- Cooper transformation. Consider for instance, the

pseudomonotone function f(x) = 2. Fory = ﬂﬂ" (x > —1), hence
=~ > —1), we obtam flz(y)) = (- —_I_Ll) which i not pseudomono-
tone. To see this, let y=~L1 2=1 Then(z—-9)f(z(y)) =5 >0, but

(2 — y)f (2(2)) = ~5 < 0.

To avoid a misinterpretation of Theorem 3. 1, we emphasize that the Charnes-
Cooper transformation is applied to the function f(x), not to its gradient. In
other words, the pseudomonotonicity of the gradient map is just a means o
obtain the main result given in Corollary 3.1.
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