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" Abstraét: In Smail Area Estimation (SAE) often the information included in the geographical
location itself of the suﬂfcy data ‘is not taken iofo Iacoount. However, in many practical fields
‘the ciata are generally related with the ‘geographical locations where ﬁhéy ate. observed.
Geographlcaily Weighted Regression (GWR) technique is a newly devcioped statistical
methodology that introduces the spatial non-—statxonarity in the regression model. .
The GWR model explains.the average behaviour of Y glvon a set of explanatory variables X,
but it may not be approprlate for modeilmg the extreme behavu)ur of Y conditlonai onX, as
' the M~quantxle regressmn models do.
_ ‘in the paper the M-quantlie regressmn modei is extended to include spanaily varying
‘ regressnon coefficients as an approach to specnﬁc modelling of data which are assocaatcd with
extreme points in the sample: Foliowxng Chambers and Tzavidis (2005), that have dcveioped:
anew approach to small area estimation based on quantile—hke parameters of the conditional
distribution of the variable of study given the covariates, we proposo to use the M—quantlle

Goographlcally Weighted regressxon for small area estimation.

Keywordsé Nonpérametric Sfﬁaii area estimation, Geographically Weighted Regression, , M-

quantile regression.




1. Introduction

For small domains geographically defined, when traditional area-specific direct estimator |
does not provide adequate precision it is possible to employ indirect estimators that “borrow

strength” from related areas. The indirect estimators can mcozporate specific random area

effects that account for between arcas variation beyond what is explained by. auxﬂ!ary
- variables included in the model. Traditionally the random area effects are considered

independent, but in practice, basically in most of the applications on environmental 'data, it

should be more reasonable to assume that the random area effects between the neighbouring

areas (for instance the ne_ighpourhp()d could be defined by 'é-conﬁguity criterion). are
cofrelatcd‘ and the cérreiati'oﬁ‘decays to zero as distance increases (Pratesi and Salvati, 2004; .
_ -2005). However, this kind of 'rﬁo&eliing also depends on strong distributional assumptions,
E requires a formal speciﬁcaﬁon of the random part of the model and does not easily allow for

outliers robust inference. | ' _ -
A new approéch to small area estimation based on quanﬁi_el'like parameters of the conditional

distribution of the study variable given the 'cbVa_riates has been recently proposed by
‘. Chambers and Tzavidis (Chambers and Tzavidis, 2005) This technique dbes not depend on

strong distributional assumption Ilke the small area models that use both covanates and

random effects, and it is robust agamst outlymg area values. Moreover the approach allows

for the estimatlon of thc dlstributlon funct]on in each small area and overcomes an 1mportant
problem in smaIl area estimation that is the tmpact on the estlmates of changmg small area
geograph:es _

* Nevertheless, any relatlonsth that is not stationary over space will not be represented
particularly well by a global model, that produces parameter estimates which represent an
average type of behaviour that is not likely to be followed at local level. As a result, the
global value of the parameter estimate can be very misleading locally. To.overcome this limit,
in this paper we propose to specify a local version of ihe 'M-quantiie regression model, that
allows the regression coefficients to vary over thé whole map. - '

The outline of the paper is the following: in - Section 1' we recall the basis of the
: Geographtcaliy Weighted Regression (GWR) Section 2 describes the M- quant:le regression
‘when it is generalized to mclude geographical weights (Section 3). Then, the small area

prediction process is presented (Sect10n_4) with the focus on the problem of the estimation of



Mean Squared Error of the small area estimators (Section 5). In section 6 some final remarks

are reported.

2. Geographically Weighted Régressibn

In many practical fields such as economics, environmenfai science and epidemiology, the data
are genéi‘ally_reigted with the geographical locations whefe;they are Qbéerved. This type of
data are called spatial data. The 'spatial relationship among data at different Jocations is
usually based on developing neighborhoods and the autocorrelatlon of locatlons ‘within
'nelghborhoods The spatial dependence among data at different locations can be mtroduced

" by specxfymg a Imear model with spatially correlated error (Anselin, 1992 Cressne, 1993):
y=Xp+e _ S ¢}

where X is the nx p matrix of the area specific auxiliary covariates X, = (x;,,%;5,--%;,), B is
the regression parameters veCtor pxl1, e is the nx1 vector of the second order variation.

Basically  there are two approaches to describe the spauai second order variation:

Slmultaneously Autoregressxve models (SAR) and Condltlonal Autoregressive modelsr
(CAR). In spatial regression. we assume _that the relationship we are modelling holds
everywhere in the study area - that is, the regression parameters are “whole-map” statistics. I.r_x '
‘many situations this is not necessarily the céée, as mapping the residuals may_re\}eal'.

Geograph_ically Weighted Regression (GWR) teChniqué is a newly developed statistical
méthodoiogy in dealing With spatial non-stationarity among regreése_'d relationship. The
technique, originally propose& by Bﬁmédon et al. (1996), 'has‘ recently received intensive
attention (Fotheringham ef al. 1997 and 2002; Yu and Wu, 2004). _

The GWR extends the traditional regression framework by allowing Iocal rather than global

parameters to be estimated. The modei can be written as:

kel
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~where (u,,v;) denotes the co.ordinates of the: ith point in space, S, (u,,v,) is a realisation of
the continuous. function . 3, (u,v) at poiﬁt‘ Iy Xys Ko Xy ére the exp.lanatory variables at
 location (u,,v,) in the studied geog;aphical region, and e, a:re.error"terms. For a given data
set, the coefﬁcienfé are locaiiy esfiﬁlated by the weighted 1east\squ_ares approach. The weights

w,(u,v,), j=1l.n, at each location (x,,v,)are taken as a function of the distance from
(u,,v,) to other locations where the observations are collected, The parameters at location

(u;,v,) are estimated by minimizing
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 the estimated parametef's_at (u,,v,) are
Ba,v,) = (X7 W,y X)X Wea,v)Y. 0

We can note that the weights matrix W(u,,v.)' in GWR varies according to the location of

point 7, and the parameters can be estlmated for any point in space, even at locatlon where
data have not been observed ,

The choice of the welghts assumes 1mp0rtance in generatmg the estimated parameters. In
spatial anaiysns observations close to a locauon (u,,v ) generally exert more 1nﬂuence on the

parameter estimates at locatnon (#,,v,) than those farther away.

One obvaous‘ choice is
w, (v, =expl-1/2d, 18] @®) -

where d, is the distance between the.points. i and j and b is caIlea bandwidth. An altefn,aﬁve

kernel utilises the bi-square function,

explt - @, /5| ifd,.j.sjb

W, (uvv) {0 (9)

otherwise '
which is particularly useful because it prévide_s 'a continuous, near-Gaussian weighting
function up to distance b from the regrESsion point an& then Zero weights for any data point

beyond b (Fothermgham et al., 2002). The bandedth b can be determined by a “least square

CFltﬁI’IOH

b, =minA®) = min 3. [y, - $,®f o)
: i=1 _ , ‘
where P, () is the fitted value of 'y, with the obséﬁat_ion at location (x,,v,) omitted from the

" fitting process. Other methods‘ of prod_ixcing spatially varying kernels exist (Fotheringham et
al., 2002). The different possible specifications of w,(u,v,) do not modify the statistical



properties of the estimator. Moreover, as a result the modalities of 1nciuswn of the GWR in.
- M-quant;le regression are not modified and s0 in the economy of this paper the attention is

 limited to. expressions (8) and 9).

3. M-quantilé Geographically Weighted Regrgssioh

" The GWR model explains the average behavmur of Y given a set of expianatory variables X,
but it may not be approprlate for modelling the extreme behaviour of 'Y conditional on X.
The M-quant_}le regression (Breck]mg and Chambers, 1988) is an approach to specific
modelling of data which are associated with extreme points in the sample. The M¥quantile
- ‘regression integrates the concepts of quantlie regressxon and expectﬁe regression within a
common framework defined by a “quantile-like” generahsatzon of regression based on
| | influence functions. The M-quantile of order g for the condz_tional density of Y given X is
deﬁnéd as the solution Q, (X,y)_) of the estimating equation J‘Wq (Y;Q) FY | X)dy =0,
. where i is a specified influence function associated with the M-quéntile. A linear M-quantile

regression model is:
O,X»=XB,@ - an

' and a different set of regression parameters for each value of q can be obtained;
In many economics and enviromhental study, the data are related with the geographical
locations where they are observed. We -prdpose to take into account thé spatial information
and in particular the §patial non stationarity mode;lliﬁg with s'p'atia]'iy' varying feg-ression
" coefficients B, (#,,v,;q). A linear M~quantile Geographicaily ‘Weighted Regression (M-

quantile GWR) model is then:
0,(X.y) = X"B, (u,,v;30) 2

.-where (1,,v,) denotes the coordinates of the ith point in space and pw(u,.,v,;q) are locally
" estimated at each location (u,,v) For spec1ﬁc q and W, estimates of spatlally varying

regress:on parameters at iocatlon (u;,v;) canbe obtamed solvmg the estlmatmg equations:



IITCR A IRL - (13)
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. where wj(u,,,v,.) are the fwei'ghts defined as above (6), ‘rjl.q =y, - xj ﬁ (#,,v39),

l//q( m,) (s rm,){ql( L > 0)~+~(1 )I( iy S 0)} and s is a robust measure of spread

. that is empioyed in preference to the standard dev:ation of the resnduals For exampie,

- common approaeh is to take s = MAR/O. 675 where MAR is the medlan ebsolute residual.

Soivmg the estimating equation is a weighted least-square problem that requlr.es an 1teret1ve
solution caIiegl iterativeiy reweighted least squafes (IRLS). There are a ot of influence
ﬁmctions‘that can be used and they allow fo; more flexibility in modelling M—quaﬁtiie GWR.
Fer eiia_mpié the Huber Pfopesal 2 influence function, W) = uI (-c<ux< ,c)'+‘csgri(u)', is
-selected (Huber, -1981) because of its oﬁﬁmali and knbwn propei'ties. The Huber function is
monotone, bounded, and twice ‘d.ifferentiable at G.'_Moreo‘ver, changiﬁg the constant ¢ can be
used to trade robustness for efficiency in the M;quahtile "r‘egress'ion fit. As ¢ decreases
(4 0), the robustness increases whereas efficiency 'decfeases;"as c iqcfeases (¢ Tw), the

robustness decreases and the efficiency increases We can note that if the weights w, (u,,v,)

are a,li equai to 1, the GWR is equal to the tradztmnal regressmn and as a consequence, M-

. quantile GWR corresponds to the tradltional M—quant:ie regression.
4. Estimation of small area parameters

Following Chambers and Tzavidis (2005), that_'have developed a new approaeh to small area

" estimation based on qu’éntiie—lik‘e parametefs of the conditional distribution Qf the variable of
- study given the covariates, we propose to use the M-quantile ‘Geographically Weighted
| regression for smeli area estimation. Our abproach, beyon& not depending on strong
distributional aSsumptioﬁ - like the small area models that use both eovaﬁates and random
effects - and beyond to being robus_t-agéirlnsf outlying area va}ues,raﬂows'to deal_with spatial
non—staﬁonarity 'a_rﬁong regfessed relationship. Moreover it allows. for the estimation of
distribution function for each small area and sti]l.overcoineé the 'difﬁcuiﬁe's due te ehanging

" small area geographies on the estimates like the M-quantile method.



In the followmg s denotes a probabihty sample of 31ze n, where n= an and m is the
P

number of small areas. The estimation procedﬁre requires the knowiedge of nx p matrix of
~ covariates X and the 'v_veights matrix W(u;, v,) for eac.h sampled unit i,
'The phases of the estimation procedure are: _ | _
1. estimation of the regression parameters of the linear M-quantile GWR model for
different values of the quan'tiile of _erder g specifying the influence funetion y . The
regress1on parameters can be obtamed by solving the estimating equatlons (13)..

2. computation of sample M-quantlle GWR coefficients, denoted by {q,s,t € s} This is

done defining a fine grid on the (0,1) mterval and usmg the sample data to fit the M-
quantlie Geographicaliy Welghted regressmn hne at each value g on this grid. For
each unit §, as much regressmn lines as the number of the values q are obtamed To

obtam g, alinear mterpoiation over this gnd is used.
3. computation of the average value of the sample M~quant1}e GWR coefficient of the

unit in area k, g, = qu . This is appropriate if g, q,‘ is deﬁned as the mean value of
ek

the population g, value in area £.
4. In order to estimate the small area parameter (small area total y,, small area mean

¥,) it-needs to estimate ﬁw (u,.,v,.;a), the regression parameters, for each area M-

quaﬁtile coefficient, g, . The predictor of small area mean ¥, assumes the form:

(Zyj +ZX1’ (uﬁvr’qk)J L o (14)
=1 fen,

where S,‘ and ¥, respectively dendte the sampled and non Sampled units in area / and
: Nk 1s the populatlon size in area k The unobserved value ;i for population unit ier,
_is prechcted using x; 5 (u,,v,,qk) Then, for each unit belonging to area k we have
different estimates of BW (ui,'vi;qk) depending on the spat;al location of the unit 7. If

the spetiai location (u;,v,) for population unit /e r, is not known, the unobserved

Il



vaiue Vi for population unit is predicted usmg X, ﬁ (uk,vk,qk) where (uk,vk) are the

coordinates of the centrozd of the kth smali area.
5, Estimation of MSE

The mean squared error of the study parameter can be obtamed applying the standard method
| developed for unbzased weighted linear estimators by Royall and ‘Cumberland (1978) The
method h_as been already apphed by_Chambers and Tzavidis under the tradltlonal M-quantlle

.mo{iel (2005). _Un_der'this ap’proétch we assume that qi it constant. The estimator of the mean
squared error is: |

My=P+B @)

where the estimator of the prediction variance of (14) is either

7 %Z})‘ﬁc (yi‘_r .xfﬁ(u',.,'v,. ;0-5))2 | : - (16a)
.
Zzpﬂc( - X, 5(%;17,»9';%))2 g _ - ' (16b)
j ies; . .
with p, = N2 +I(z & k)(N - nk)/(nk 1)) [ 1= w LG0X, (XTW ( q,,)x )

- W, (qk) isa dlagonal matrix that contams the final set of welghts produced by IRLS used to

compute Blu,, v, :7), and t, is the sum of the non»sampie covariate values in area .
The first appr()ach (16a) conSIders the variance (Var(y;) ) to be uncondltlonal on the selected

Smail area and it is called the ‘populahon‘ leve} residuals method_. Instead, .m the area level
residuals appfoach (i6b) the variance is interpreted as conditionally on the seleéted small area



| ‘The estimator of the conditional bias-‘-f} | of (14) is given by:

ioiesy ek

B, N“[ZZp,kx B(u,,vnqj) >/ B(u,,v,,qk J an

6. Final remarks

‘In this papér we extend the M-quantile regression including spatially varying regression
coefficients for $mall aréa f)rediction Process. T“ne. i;roposed' approach, beyond to having
‘property of M-quantile apprbach, allows to déal with spatial non—stationarity among regresse(_i‘
' :reiationship. Moreover, a method of estimation of MSE under M-quan_tile GWR is presented.
The main reason for using M-quantile GWR for small area estimation is to make the best use
of the available spatlai auxiliary mformatton and to take into account the spatial non
stationarity in order to obtam the most efﬁclent estimator possible. There are several reasons
why we might expect measurements of relationships to vary over space. An obvious ones
relates to sampling variation. A second possible «cause is that, for whatever reasons, some
relatlonships are mtrmsmally different across space. Another cause is that somet;mes the
parametric model from which the relationshlps are estimated is a gross misspecification of
reality (F otherlngham etal, 2002)

The M-quantile GWR model, like M-quantile regression, offers a way of modelling between
area varlablhty of the data without exphcitly specifying the random components of the model.

' Moreovcr M-quantile GWR cap’sures the not statlonary over space via area-spemfic M-
quantile GW coefficients, that depend not only on the q,c , but also on the location (%,,v,) of

“each small area. Finally, the M-quantile GWR ‘is not influenced by Modifiable Areal Unit
Problemn (MAUP) i issues to the same extent as are more traditional global modeis J

~* One poss;ble objection to this techmque is that much of the spatial variation in the parameters
could be removed by the addition of further expianatory varlables But we can state that the
' spatial non stationarity can be caused by factors that the model can not take into account.

The M-quantlle GWR for small area estimation mamtams the same drawbacks of M—quantiie
regreséion respect to the traditional small area models: the M—qﬁantile GWR modelling will
be less eﬁidi,ent than the mixed modefling_ when the assumpﬁon of the traditional small area
médeliing are true. Further the r_nethOd requires the knowledge of appropriate a priori

information: the ideal information set includes maps with individual location of sampled and

10



not sampled units. However if the non sa;mpled units coordinates are mzssmg, they- can be
substituted by the coordinates of the smaH area centroids. In addition the auxiliary variables
must be known at unit level. The ideal set of information seems to be demanding: anyway the
Geographlcai Information Systems (GIS) make it available the geographic iocations and at the
same time they can manage any adm;mstratwe files that can provide appropriate mdmdual
auxiliary mformatton

‘]ssues beyond ‘those discussed in this article requ;re further theoretlcai work For cxample
standard regression dxagnostw whlch can be informative in understandmg various aspects of
model performance have to be mvestigated In addition, it has to be explored what happens
when some expianatory variables influencing the study variable have global effect while
~ others sthl maintain their Iocal effect. | ‘ ‘ | "
Empirlcal studles are aiso important to gasn further experlence with the approach that we

propose.
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