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Abstract

A notion of convexity for discrete functions is first introduced, with the
aim to guarantee both the increasing monotonicity of marginal increments
and the convexity of the sum of convex functions. Global optimality of
local minima is then studied both for single variable functions and for
multi variables ones. Finally, a concrete optimal fleet mix problem is
studied, pointing out its discrete convexity propert;es
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1 Introduction :

Concrete problems are often discrete, in the sense that the variables are defined

over the set of integers. This happens, for instance, whenever the variables

represent the number of units, such as workforce units, number of ambulances,
number of vehicles, and so on.

Due to their importance in applications, discrete prob&ems have been widely
studied in the mathematical programming literature, especiaily from the al-
gorithmic point of view. Some approaches to convexity properties of discrete
functions have been proposed too (see for example [2, 3, 5]), pointing out the
difficulty of this research field.

The aim of this paper is twofold. First, we propose an approach t0 the
notion of convexity for discrete functions, w1th the aim to guarantee both the
increasing monotonicity of marginal increments and the convexity of the sum
of convex functions. Some properties of the defined class of functions are then
studied, especially with respect to the global optimality of local minima. Then,
a concrete problem of optimal fleet mix is analyzed. In particular, we consider a
model involving both internal workforce units and external technicians; quality
of service requirements and penalties for unfulfilled services are also considered.
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The model is then studied from a theoretical point of view, pointing out that
some of the variables can be parametrically fixed to their optimal value, thus

obtaining & parametrical discrete convex objective function.

2 Discrete convex functions

Convexity property has been widely used in Mathematics and in Economics
due to its usefulness in optimization problems (both critical points and local
minima are global optimum poings). As it is well known, such » concept regards
to functions defined over convex sets. Unfortunately, many applicative problems
arising in Operations Research and in Management Sclence deal with integer
programming, As a consequence, some efforts have been done in the literature
in order to determine a convexity concept suitable for discrete problems.

In this section, we aim to propose » new definition of discrete convexity by
using an approach different from the ones already appeared in the literature.
In particular, cur aim is to guarantee two properties which results to be useful
in Economics and in applicative problems, that are the increasing monotonicity
of marginal increments and the discrete convexity of the sum of two discrete
convex functions.

2.1 A brief overview

For the sake of completeness, let us now briefly recall some of the results alreaciy
appeared in the literature.

Favati and Tardella in [2] introduced the concept of integer convexity extend-
ing a function f, defined over a discrete rectangle X C Z7, to a piecewise-linear
function f defined over the convex hull of X, denoted with co(X) C R™.

Definition 2.1 A set X < Z™ iz sald to be a diserete rectangle if there exist
a,b & Z™ such that:

X——.—{mQZ“:aigmégbz-,a’=1,...,n}

Given a number z € R it is denoted with N (a:) the so called discrete neighbor—
hood of z, deﬁned as the set

N(m):{zE\Z“:!xi—zi[< l,izl;...,n}

Definition 2.2 Let f: X — R, where X C 2™ is a discrete rectangle. The so
called extension of f is the function f: co(X)} — R defined as follows:

. k
?(az)mmin{Zaif(z : 2 e Nx), Zazz =g, Zaz-—l a; >0},

g ] gumd . gual -

where k = card(N(z)). Then, function f is said to be integrally convex if its
extension f : co(X) — R is convex.




This discrete convexity property is not easy to be verified. In any case, the
authors have been able to state some useful properties and a global optimality
results, which deserve to be recalled for the sake of completeness.

Proposition 2.1 Let f,g: X — R, where X is a discrete rectangle, then
Fl2) +3(z) < (F+9)(x), Vz € eo(X) - (2.1)

furthermore, if over any undt hyperéube contained in co{X) af least one of the
functions f{x) and g(x) is linear, then

f(z) +§(z) = (F +g)(z), Yz € co(X) : (2.2)

| Proposition 2.2 A point z € X is a local minimum point for f over co(X) if

. and only if it is a local minimum point for f over X.

Proposition 2.3 Let f be an integrally convex function on a discrete rectangle
X. If z is a local minimum point for f over X, then z is a global minimum
point.

Unfortunately, the clags of integrally convex functions is not closed under -

addition (see Property 2.1). However, if f and g are integrally convex on X and
condition (2.2} holds, then f -+ g is also integrally convex. This happens, for
example, when f and g are submodular integrally convex functions.

A branch of the literature, then has concentrated its attention to this partic-

ular class of functions. Murota in [3] defines a concept of convexity for integer-

valued functions and investigates its relationship to submodularity. Yiiceer in
[5] establishes the equivalence of discrete convexity (in the sense of Yiiceer) and
increasing first forward differences of functions of a smgie variable.

Definition 2.3 Let S be a subspace of a discrete n-dimensional space. A func-
tion f: 8 — R is discretely convex (in the sense of Yiiceer) if for all 2,y € 5
and for all € (O 1)

af@)+ (1 - )/ 2 _min J@)

where N(z}={u € §: [ju~ z{| <1}t,z=az+ (1 —a)y and
il = amesx (fudl}

Then, Yiiceer propose the concept of strong discrete convexity by imposing
additional conditions on a discretely convex function such as submodularity.
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that is to say:

2.2 A new approach

Let us now introduce a new notion of convexity for discrete functions by means
of an approach not based neither on extended functions nor on submodular
ones, hence different from the ones proposed in [2, 8, 5]. With this atm, let us

. first Introduce the definition of discrete reticulum.

Definition 2.4 Let ret(z,y) be the set
’.'“St(.’,t,'y) = {Z < Z™ : min {xhy’&} g 24 S ma’x{xhy%} 3 g = }-1 ")n’}
A set X C Z™ is said to be a discrete reticulum if ret(z,y) C X Vo, y € X.

Obviously, any discrete rectangle is also a discrete reticulum; notice also that
Z% is a discrete reticulum but not a discrete rectangle.

Let us now introduce the definition of discrete convex function. With this
aim, from now on the infinite norm will be used, so that the norm of an n—'

- dimensional vector @ will be denoted as follows:

Nzl = llzloo =, max_ ol
As usual, if {lz| = 1 then x is said to be an unitary vector.

Definition 2.5 Let f : X — R, whete X € Z" s a discrete reticulum. Func-
tion f is said to be a discrete convex function if for all x € X, for all v € Z7,
Yol = 1, such that x + 20 € X, it is:

flz+20) 2 2f(z +v) - flz) | (2:3)

Let us point out that any continuous convex function restricted over a dis-
crete reticulum verifies the proposed definition.

Remark 2.1 It is worth noticing that, by simply renammg the varzables, if
x — 2v € X then inequality (2.3) can be rewritten as:

f@) 2 2f(z —v) — flz - 2v)

- flz-20) 2 2f(z ~v) ~ f(2)

In other words, if inequality {2.3) holds for a certain direction v then it is .
necessarily verified also for the direction —v {in the case z — 2v € X of course).

First of all, it is worth noticing that from Definition 2.5 it follows straight-
forward that the sum of tiwo discrete convex functions is discrete convex too.

Theorem 2.1 Let f,g : X — R, where X is a discrete reticulum, be two
discrete convex functzons and let « € R, o > 0. Then, ( f+gXz) end af(x)
are discrete conver functzons A




Let us now prove the following characterization of discrete convex functions

which points out that the proposed definition guarantees the 1ncreasmg mono-,

tonicity of marginal increments. .

Theorem 2.2 Let f: X — R, where X ¢ Z7 is @ discrete rétz'culum. Function
f is a discrete convex function if and only if for allz € X, for dl k,h € Z,
with h > 1 and k > h, for allv e 2%, [v]| = 1, such that z + kv € X, it is:

flz+ ko)~ fla+ (k=1 > flz+hv) — flz+(h - ) (2.4)

Proof The sufficiency follows just assuming b =1 and k =2,

The necessity is proved by induction on k. Let h 2 15 if k = h the inequality
is trivially verified. Let us now assume the inequality true for k> h and let us
verify i for & + 1. For the discrete convexity of f it is:

Fla+ (E+1W) - flz + kv) = 2f(:c+kv) — flz+ (k— 1)) ~ flz + kv)
‘ = f(z + kv) = f(z + (k — L))
> flz+hv) — flz+ (b~ 1)),

so that the whole result is proved. ‘ ‘ ™

The following further result will be useful in the next section in order to
prove some global optimality conditions.

Theorem 2.3 Let fi:X - 9%, where X C Z™ is a discrete réticulum, be o
discrete convex function. Then, for oll x € X, for allk € Z, k 2 1, for dll
ve Z® vl =1, such that x + kv € X, it és:

flx+kv) - flz

)
Proof By induction on k. For k the inequality is trivial; let us now
1

suppose the inequality true for k >
induction assumption it yields:

4 (B + 1) - F(@) = [F(@ + (b + 1)) = f(z+ ko)) + [F(e + ko) = £(2)]
‘ > [flx + (k + D) ~ flz+ ko) + k[f(z +2) — flz)]
The result then follows noticing that for Theorem 2.2 it is:

@+ (k+1)0) = fz+kv) = fla+0) - f(@)

The whole theorem is then pﬁoved.- - 13

> k{f(z +v) - f(z)] (2.5)

=1
and let us verify it for k + 1. From the




3 Local and global optimality

In this section we aim to study the global optimality properties of discrete
convex functions; in particular we are going to deepen on the behavmur of local
minima.

3.1 Definitions and preliminary results

For the sake of convenience, let us first mtroduce the foHowmg notations and
definitions. ‘

Definition 3.1 Given a point z € Z” the following sets are defined:

H@)={yeZ": y=z+v, ve 2" |jv|=1}
S)y=weZ": y=x+kv, ke Z, ve Z" v} =1}

The set H(x) represents the surface of a sort of discrete unitary hypercube
around point «, so that it may be intended as a sort of neighbourhood of « itself;
S(z) is a discrete star shaped set centered in 2 and generated by the discrete
unitary directions. Obvzousiy, it is H(z) C S(z).

Deﬁmtmn 3.2 Let f: X — R, where X C Z™ is a discrete reticulum. A point
z € X is said to be a local minimum if:

fl@) < fly) VyeXNH(z)
while it is said to be a global minimum if:
@y < fly) WyelX
The next preliminary result follows straightforward from Theorem 2.3.

Corollary 8.1 Let f : X — R, where X C Z™ is a discrete reticulum, be a
discrete convex function, If zeXisa local minimum then f(a:) < f(y) for all
y e XnS(x). '

Proof The result follows from Theorem 2.3 noticing that the local optiméiw
ity assumption implies that f(z +v) ~ f(z) > 0. 7

3.2 Convexity and optlmahty in 2

ki is worth focusing on the attention to single variable dlscrete functions, due
$0 their usefulness in applicative problems. First of all, let us show that smgle
variable discrete convex functions can be characterized with properties which
result to be easier to be verified with respect of the genersal definition.



Theorem 8.1 Let f: X — R, where X ¢ Z is a discrete reticulum. Function

[ is diserete convex if and only if for all z € X such thet z +2 € X, it is:
f@+2) 2 2f(x +1) - f(z) (8.1)

Proof The result follows directly from Definition 2.5 and Remark 2.1. n

Coroilarjr 3.2 Let f: X — R, where X C Z is a discrete reticulum. Function
f is discrete convex if and only if for all z,y € X such that y > x, 4t is:

fly+1) - fy) 2 flz+1) ~ flz)

Proof The sufficiency follows trivially assuming y = x + 1. The necessity
follows from Theorem 2.2 by assuming v = 1 and y =z + k.’ ]

Let us finally point out that for single variable functions the discrete con-
vexity property guarantees the global optimality of local optima.

Coroilary 33Let f: X — R, where X C Z is a_" discrete reticulum, be o
discrete convex function. If x ¢ X is a local mangmum then it is also o global
one. : ' :

Proof Follows directly from Corollary 3.1 since in the single variable case
it is S(z) = Z. . : O

As a conclusion, It is worth noticing that in the case of single variable func-
tions the proposed deﬁnﬁ;xon of discrete convexity verifies all the typical proper-
ties of continuous convexity, such as the increasing monotonicity of the marginal
increments, the global optimality of local optima, the discrete convexity of the
sum of discrete convex functions.

3.3 Convexity and optimality in 2", n > 2

" Unlike the single variable case, when two or more discrete variables are involved
then the discrete convexity of the function is not sufficient to guarantee the
global optimality of a local optima. With this regard, it is worth noticing
that Corollary 3.1 Is not a complete global optimality result, since it states the
global optimahty of a local optimum only with respect to the set XnN&(x). This
behaviour is pointed out in the next example,

Example 3.1 Let us consider the following function defined over X = Z2:

1 1
— &g 4+ —2y

Flz1,22) = (w3 = 2w1)% + - =




This is clearly a strictly convex function over R? and hence it is also discrete
convex over Z2. Point z = (0,0) is the unique global minimum, but by means
of simple calculations it can be seen that, for example, the points (1,2), (2,4},
(3,6), are local optima (with respect of Definition 3.2) but not global ones.

As a consequence, some additional regularity assumptions are required to
extend the optimality range of a local optimum. A first tentative regu}arity
assumption is proposed in the next deﬁmtion :

Definition 3.3 Let f : X — R, where X C Z" is a discrete reticulum. Let
also be W = {w{l} . (”}} C Z" be a set of n linearly mdependent unitary
‘vectors. The following regularxty condition is then defined:

" (R1) forallz € X, foralli,j =1,...,n, i # j, such that z+w® +uw® e X,
it is f(m+w(3) +w e)) f(ﬂ?“?“wo}) > flz+w) - f(z)

In the case of discrete convex functions property {R1) can be characterized
as follows.

Theorem 3.2 Let f : X — R, where X C Z™ is a discrete reticulum, be a
diserete convex function. Let also be W = {w(l) w(“)} Z" be a set of n
linearly independent unitary vectors. The regulamty cond@tzon (R1) holds if and
only if for allz € X, for alli = 1,...,n, for all y € Z" N cone{W}, such that
x+y+w(*)eX it 4s: ' \

f{w+y+w{’))~f(m+y)>f($+w ) = f(z)

" Proof Let us first prove the result for y = fw(), B € X;'in other words let
us first prove that: , ‘

Flat B 1 u) - fo+ puD) 2 fo D) - f@)  (32)

For 8 = 0 the result is trivial; let now be 8 > 0 and assume by induction that

“the inequality holds for 3 — 1. By applying the induction assumptxon and the
regularity condition (R1) it yields:

. Fl@ + B 4 w®) — flo+ pu) Fl+ (8- Du? +w? + @) - fla+ ,Bw(j))

S > fla+ (8- Dw? + )+ fla+ (6~ D+ wl¥)
o | ~fla+ (8~ 1w?) - flz + puw’?)

e+ (B~ +0) - fla+ (8- D)

flo+0) = f(a)

Let now y be any vector in W; then, it can be expressed in the form

7
y == Zﬁ(:i)w(j}
F=1

I

v




As a consequence, we have to prove that

The result follows directly by applying n $imes, one for every componenﬁ:
8w of y, the preliminary result (3.2). 0

The previous resuit aiiows us to improve the range of optimality of a local
minimunm.

Theorem 3.3 Let f : X — R, where X C Z™ s a discrete reticulum, be a

discrete convez function. Assume also that the regularity condition (R1) holds.,

If ¢ € X is a local minimum, then x is a global minimum with respect to the
“sets x -+ cone{W} and x — cone{W}.

Proof Assume by contradiction that @ is not a global minimum with respect‘

to & + cone{W}, that is to say that there exists 2 € X N (x -+ cone{W}) such
that f(z)'< f(z). It Is now possible to construct a finite sequence of k elements
{0} € (x + cone{W}) N (z ~ cone{W}) such that 20 = z, 2 = » and
20D — 20) ¢ W ofor all § = 0,...,k — 1. Since f(z) < f%:_c} there exists
ke [0,k ~ 1] such that f(z(*)) > f(z{k*"l)) Let us define y = 2\*) — z and let ¢
be such that w® = zF+1) — z(B) & W; then we have f{z +1y) > fle+y+wd)
which implies, for Theorem 3.2, f(z) > f (x + w®) which contradmts the local
optimality of z. .

Analogously, it can be proved that x is a global minimum with respect to
x - cone{W} 0O

4 Convexity in an optimal fleet mix problem

Discrete optimization has many applications in everyday life and for this reason
it. has been widely studied in the literature.

This kind of problems are algorithmically difficult to be solved from a com-
plexity point of view and are usually approached with integer programming
techniques, branch and bound algorithms, local search, genetic algorithms.

In this section we aim to study a concrete optimal fleet mix problem, which
is a discrete variables model related to the management of internal and external
workforce units. .

A theoretical study will points out that this problem can be solved with
a polynomial complexity by means of a sort of parametrical approach. It will
. be also proved that this approach will provide a discrete convex parametrical

objective function. This property allows to solve the problem very efficiently,
that is with a very small CPU time, so that it could be used in a real time
_environment, such as in connection with real time routing problems.




4.1 Optimal fleet mix: an integer programming problem

This concrete problem is referred to routing of maintenance units (see for ex-
ample [1, 41). The firm employes internal and external technicians for repairing

© ATMs. Customers signal technical malfunctions to the call center. After the

signailing the company has a contractual time window to repair the machine.
If the time elapses the firm has to pay a pénalty. Main targets ave: to minimize
call rates, repair time, travel time, and penalty costs. Call rates depend on
product reliability, repair times on service diagnostic and service tools, while
the travel time is dependent on transportation methods and environmental con-
ditions. The first three aspects concern internal politics of renovating machines
and personal training. The last one is the one we-treat in this work.

We introduce a suitable ébjective function that takes into account both fixed
and variable costs. The aim is to minimize this objective function subject to

"guality of service (QoS) constraints. Let us study the problem with respect to

a particular geographic area and within a period of one year and let us denote
by I the set of days,of the year. The variables represent the number of internal
and external technicians to be employed. The input data are:

~» the daily cost of the technicians
s the penalty costs |

e the minimum service level the firm wants to guarantee.

Pirst of all we examine the available historical series of calls for failures
(without distinguishing among different types of failures) and we establish two
benchmarks: the minimum and the maximum number of calls per day. From
these parameters we can extrapolate the range of workforce necessary to reply to
the failure calls. The graph in the appendix represents the need of technicians
of a particular city in a week. Two measures appesrs in the graph: AM; and
my are, respectively, the maximum number of calls that the firm’s call center
receives the day ¢ according to the data of the historical series and the minimum
number. '

These two values determine the unique constraint of the model in fact, the
total number of calls that an employee is able to fulfill can not be less than the
minimuom w; for each 4, that is fuz > my Vi = 1,..., 1. Actually, in order to
guarantee a sort of quality of service, the firm may want to gharantee a higher
minimum level of calls fulfilled; this can be represented by means of a parameter

" pe0,1]. In order to define more in detail the model structure, let us introduce
" the followmg definition. -

Definition 4.1 Let us consider the following data and parameters:
M € ¥ : estimated mazimum number of colls
m € N : estimated minimum number of calls
I'e X number of working days under consideration
x € N: the number of employees of the firm

10



z € ¥« number of external technicians employed ot the days ¢ = 1,...,1
Bz € R number of calls fulfilled per single technician in a working day
p € Ry @ daily cost of the single internal technician

ey € Ry ¢ penalty cost, proportional to the lack of

technicians {0 repair the faults

cx € Ry cost per coll of the external techmczan

p € {0,1] : penalty coefficient.

The optimization problem cen be modelled as follows:

 f min f(z, 2)
P'{ (m,z)eg’

where the cost objective function is:

flz, ) = Imp—{—czZzz- + cwt(; ) (4.1).
. =1
and the number of not fulﬁﬂed calls is:

I

w(z,2) = Zmax{OM ﬁw:c za}———Z(M¢-ﬁmm—3¢+3Mi—ﬁéé—Zif)

(A f=1

while the feasible regioﬁ is given by the following daily constraints:

S={zeRzeW M —p(M;—m)<Beztnm Yi=1l.I}  (42)

External technicians are employed not every day. In the days during which
the call center receives many calls, the firm can decide to employ an unlimited
number of external technicians and it pays them for the whole day. On the
other hand, if internal employees can cover all the demand peaks, z will be
equal to zero. This kind of mixed fleet is usually employed in firms with an high
volatility of demand and & stochastic trend. '

Remark 4.1 Smce(m, z) €8, e M;— ﬁmm—zz<p(M m)Vi=1,...,1,

then w(z,2) < pEz (M — my). In this light, pE =1 (M; — my) is the maxi-
mum number of calls which might be left unfulfilled. Note also that, since the
objective function has to be minimized, we can restrict the study of the problem
to the following interval of variable

0<a< M = max -{{MW} | | (4.3)_‘

B

11




4.2 Fundamental properties of the problem

Problem P is a discrete variable mininmum problem, and can be solved with
any of the known discrete programming algorithms. Clearly, due to the great
number of variables (I + 1 with I equal to the number of working days in the
year), the complexity of such algorithms could rnake 1mp0551b1e the use of this
problem in real time environments.

Actually, deepening the study of the problem, we can state properties which
will allow to solve it with just a linear complexity and a very small CPU time
requiremern. First of all, let us notice that the objective function of problem P
can be rewrltten a8

flz,z) = Ipz + Zqﬁ(x, %)

=1

where for all i = 1,...,1 it is:
(@, 2) = % + e max {0; M; — Bz — 2}

In other words, the z; variables are independent one each other, so that whenever
x is considered as a parameter then problem P can be solved separately with
respect to each variable z;. This suggest us to state the following result.

Theorem 4.1 Let us consider problem P and assume x to be a fived parameter.

For any i € {1,...,I} the optimal solution of the following problem:

{ min g(z:) = Cozs + ¢ max {05 My ~ o — 2}
2 2 My - p(My — my) — Buz

is given by:

.y max {0, M; — Be2} if e < Cu
Ei(z) = { max{0, M; — Bpz ~ | p(M; — mﬁ)J} ifc, = ey (4.4)

ing for z; > 0, that is to say that g(z; + 1) — g(2;) > 0 for all 2; > 0. Noticing
that

Proof (Case ¢, 2 ¢y) We just need to prove that g(z;) is monotone increas-

gzl —g(z) = cz«‘wcw'{max {0; Mm — Bt — 23} —.ma.x {0; M@ = B - 2y - 11)

and taking into account that M, — B,x — z; is an integer value, it results:

. VR e, if M; — Bpz~ 2 <0

glzi+1) g(z*)”“{ =Gy M — o —22>1

and the result is proved since ¢, = 0 and ¢, > ¢y, taking into account that
[(M; — p(M; — my) — Boxt] = My ~ Bz — |p(M; —my))-

(Case ¢, < ¢,) First notice that:
0 if z; > max {0 M-——ﬁ x}
- M, — JERPYIS . 2 PRl g

max {0; M; = Baz z‘}‘ { M;— Bpx — 2z i 0 < 2z < max {0, M; — fx}

i2



so that it yields:

(z_) - Cp 24 if Z 2 max {U,Mz - ,3;3.’13}
g\z) = Zi{Cz = Cy) + cw(M; — Bpz) 0 < 2 < max {0, M; — Bz}

The result then follows since'cz > 0 and ¢; — ¢y, < 0, taking into account that

max {0, M; — Bz} is a feasible value. 0

v

Remark 4.2 It is worth pointing out an economic interpretation of the previ-
ously obtained results. ‘
' In the case ¢, = ¢y the cost of an additional external technician is greater
than the cost of the penalty. This means that, from the firmn’s point of view, it
is better to pay the penalty than to employ an additional external technician;
as - consequence the optimal value of z; corresponds to the lower value it can
- agsume, that is max{0, M; — Bpx — |p(M; — m;) |}
On the other hand, in the case ¢, < ¢, it is better for the firm to avoid
penalties fulfilling all of the daily calls. In this light the firm employs aﬂ the
necessary external technicians, given by max {0, M; — fzx}.

Theorem 4.1 and Remark 4.1 allow to rewrite problem P as follows:

f min p(z) = (m £(xY)
P'{ 0<z< M : (4.5)
where 2(x) = (81(z),.... %1 (as)) as given in (4.4). Just notice also that
plz) = Imp + ey Z Zi(z) 4 ez, 2(z)) © o (4.6)
i=1 . .
— Lot Y (e i) | (47)
il

and that in the case ¢z < Cy it Is wiz, :2(93)) = 0 for all z € [0, M], while in the
case ¢y 2 Gy it is

I
w(z,#(z)) = > max{0;M; ~ Bz ~ max{0, M; ~ fox ~ |p(M; — ma)|}} -

g=1

Zmax {0; min{M; — B LP(M mz)l}}

[0

i

As a concﬁusion, problem P has become a single variable one and can be solved
by simply comparing the values of ¢(z) for all z € [0, M.
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4.8 Discrete convexity of the objective function ¢(x)

- In the previous subsectioh we have shown that problem P can be easily solved,
from a mathematical point of view, with a single variable discrete problem.

In order to improve the use of this problem as part of a real time system,
it is impottant to determme the optimal soiu’mon wzt;h a CPU time as small as
possible.

In this light, we now aim to study the discrete convexity of function ¢(z),
'~ in order to use the global optimality of local minima (see Corollary 3.3) as an
efficient stopping criterion.

Theorem 4.2 Consider problem P and function ¢(z) as defined in (4.5) and
(4.6). Then, function p(x) is discrete conver.
Proof For the sake of convenience, let us define A%p{z) as follows:
A’p(z) = p(z +2) + p(z) - 2p0(z +1)

By means of Theorern 3.1 function ¢(z) is discrete convex if and only if A%p(z) >
0 for all = € [0, M]. Two exhaustive cases are now going to be considered.
(Case ¢, < ¢y) Since w(z, 2(z)) = 0 for all z € [0, M] it results

I .

Alplz) = oY &z +2)+ &(x) - 22(x + 1)]
R Fad '

7

= ¢,y A%%(x)
. 4=l
By means of simple calculation, for all4=1,...,T ‘we get:
0 if M; ~ fo > 26,
Agé-(x) - 28, — M; + Bex U B, < M; — Box <20,

¢ M; - Bz if 0 < M; — Box < By

a if M; — Bpx <0

s0 that A%2;(z) > 0 for all i = 1,...,] which implies A%p(z) > 0 too.
(Case ¢, = ¢y ) For the sake of convenience, let us introduce the following
notation:

hi(z) = ¢, 5:(x) + ¢, max {0; roin{M; — Bpx; | p(M; — my J}}

so that o(z) = Izp + me hi(x) and hence AZp(z) E,&_ A%h{x). Some
exhaustive subcases have now to be considered for any ¢ = 1,..., .

Assume M; — Bex — [ p(M; — my)] 2 26,. Then, it results A%, i(x) = 0.

Assume By < M; — fex — | p(M; —m;)| < 28;. Then, by means of simple
calculations and taking into account that ¢, > ¢, we have:

APhy(z) = o [~Mi+ Box + 28 + |p(M; —my) ]

: +ey [max{0; M; — 8,2 — 28,} — Lp(M2 —my)]]
Co =M + Bpx + 28, + max{0; M; — o — 26;}]
= ¢y max{0; —M; + Bz -+ 23,1 2 0

v
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Assume 0 < M; — Bzz — |p(M; —m;)] < Bz. Then, by means of simple
calculations and taking into account that ¢, > ¢, we have:

A’hy(z) = i (M= faz — |p(M; —mi)|] + e Lo(M; = m;)]
+eo [max{0; M; — fox — 265} — 2max{0; M; — Boz — Bs}]
> oy [M; — Box 4+ max{0; M; ~ Box — 28} — 2max{0; M; — Gzz ~ B }]
By means of the éxhaustive cases M; — Byx = 20y, B < M; — Bex < 28, and
M; — By < B, and reca,lhng that M; — By 2 |p(M; —my)] = 0, it can then

be easily verified that A%k () > 0.
Assume M; — Bpz — | p(M; — my)| < 0. Then, it results

Ahi(z) = max{0; M; - Bpx — 28, } + max{0; M; Wlﬁmx}
Cw —2max{0; M; — By — B}

go that
: 0 i M; — Boz > 20
APhy(g) = { e Mt Bow i fo < My~ Bow <20,
' M ~ Bo 0 < M; ~ oz < B
0 if M?. - )Gma'z' < {}

w}uch implies the nonnegatwlty of A%h(x). :
As a conclusion, we have stated that A%h(z) > Oforalli=1,...,1, and
this implies A%p(x) > 0 too. The result is then proved. : 0

Finally, let us conclude our study pointing out how the optimal solution can
be efficiently found.

Algorithm Structure
1) Det’e'rmine M and let z* := 0, 2’ := 0 and local := false;,

3) While not local and 2’ < M do

2a) ' =2’ +1;
2b) if p{z") < p(z*) then z* = 2 else local := true

3) The optimal solution of problem P is (z*, £(z*)) with optimal value p(z*).
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