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Abstract

The aim of this paper is to show how a wide class of geuneralized
guadratic programs can be solved, in a unifying framework, by means
of the so called optimal level solutions method. In other words, the
problems are solved by analyzing, explicitly or implicitly, the optimal
solutions of particular quadratic strictly convex parametric subprob- '
lems. In particular, it is pointed out that some of these problems share
the same set of optimal level solutions. A solution algorithm is pro-
posed and fully described. The obtained resulés are then deepened on
in the particular case of box constrained problems.

Keywords generalized quadratic programming, fractional program-
ming, optimal level solutions. '
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1 Introduction

The aim of this paper is to study and to propose a solution method for the
following class of generalized quadratic problems:

P { iﬁf H(x) - f (%mTQm %qT:c.—i— qo) g (dT z + do) + go (dT:c +dg)
B z€X={zeR: Az > b}

where A € R™™, g.d € B°, d # 0, b € ®™, qo,dp € R, Q € RV s

symmetric and positive definite, gi,g2 : g — R, f 1 {25 — R, with g1 -
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positive over {1, and § strictly increasing over {1y, where

Qy = {yeﬁ%:yszm-l'—do,meX}

Q {ye%:y:%xTQx+qT:c+qo,weX}

Various particular problems belonging to this class have been studied in
the literature of mathematical programming and global optimization, from
both a theoretic and an applicative point of view ([2, 12, 13, 14, 20]). In
particular, it is worth noticing that this class covers several multiplicative,
fractional, d.c. and generalized quadratic problems (see for all [4, 6, 7, 8,
11, 16, 18}) which are very used in applications, such as location models,
tax programming models, portfolio theory, risk theory, Data, Envelopment
Analysis (see for all [1, 9, 11, 15, 16, 21]).

The solution method proposed to solve this class of problems is based on
the so called. “optimal level solutions” method (see [3, 4, 5, 6,7, 8, 10, 17,
18, 19]). It is known that this is a parametric method, which finds the opti-
mum of the problem by determining the minima of particular subproblems.
In particular, the optimal solutions of these subproblems are obtained by
means of a sensitivity analysis aimed to maintain the Karush- Kuhn-Tacker
optimality conditions.

Applying the optimal level solutions method to problem P we obtain
some strictly convex quadratic subproblems which result to be independent
with respect to functions f, g1 and go. In other words, different problems
share the same set of optimal level solutions, and this allow us to propose
an unifying method to solve all of them.

In Section 2 we describe how the optimal level solutions method can be
applied to problem P; in Section 3 a solution algorithm is proposed and
fully descr}bed finally, in Section 4, the obtained results are deepened on
for the particular case of box constrained problems.

2 Optimal level solutions approach

In this section we show how problem P can be solved by means of the
optimal level solutions approach [3, 5, 6, 7, 10, 17]. With this aim, let £ € R
be a real parameter. The following parametric subproblem can be obtained
just by adding to problem P the constraint d¥z + dy = £:

P mff( et Qz +¢F $+<10)91(§)+92(€
¢ re€Xe={zeR": Az > b,dTx +dy = £}

‘The parameter £ is sald to be a feasible level if the set X¢ is nonempty, that
is if £ € OQy. An optimal solution of problem Fy is called an optimal level
solution. Since g is positive over {y and f is strictly increasing over Qq,
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then for any given £ € {1, the optimal solution of problem P: coincides with
the optimal solution of the following strictly convex quadratic problem Py

P, . inf £27Qz + ¢7z + qo
& meXg——{a:eW‘ A:}:>de$+d{}—-£}

In this light, we say that function ¢ is parametricolly-convezifiable.

For the sake of completeness, let us now briefly recall the optimal level
solutions approach (see for example [10]). Obviously, the optimal solution
of problem P is also an optimal level solution and, in particular, it is the
optimal level solution with the smallest value; the idea of this approach is
‘then to scan all the feasible levels, studying the corresponding optimal level
solutions, until the minimizer of the problem is reached or a feas1blc halfiine
carrying ¢(x) down to its infimum value is found. : :

Starting from an incumbent optimal level solution, this can be done by
means of a sensitivity analysis on the parameter £, which allows us to move
in the various steps through several optimal level solutions until the optimal
solution is found.

Remark 2.1 Let us point out that problems ?g are independent with re-
spect to the functions f, g1 and go. This means that different parametrically-
convexifiable problems, either multiplicative or fractional or d.c. quadratic.
ones, share the same set of optimal level solutions and can then be solved by
means of the same algorithm iterations. In this light, it can be said that the
solution method we propose in this paper represents an unifying framework
for various classes of generalized quadratic problems.

2.1 S{;arting problem and sensitivity ahalysis

Let o' be the optimal solution of problem Pgr, where dTa/ +dy = &', and let:
us consider the following Karush-Kuhn-Tucker conditions for Py

[ Qz' +q= AT+ d)

Az’ +dy=¢'
- Ax'>b feasibility
A u>0 optimality (2.1)

pT(Az' —b) =0  complementarity
L AER, pech™ :

Since Pél is a strictly convex probiem the previous system has at least one
solution (g, \').

By means of a sort of sensitivity analysis, we now aim to study the
optimal level solutions of problems Per.1g, 0 € (0,€) with ¢ > 0 small enough.
This can be done by maintaining the consistence of the Karush-Kuhn-Tucker
systems corresponding to these problems.



Since the Karush-Kuhn-Tucker systems are linear whenever the comple-
mentarity conditions are implicitly handled, then the solution of the opti-

mality conditions regarding to Py is of the kind:

d(0) = +00s, N(O) =N +08y, f(0) =i +08, (22)
so that it results: ' :

(Qz' +0A,) + g = AT( + 8A,) + d(X + 0A,)
AT 4 0A) +do =& + 0,
Az’ + 0A,)>b
{u +047,)=0
(1 + 00, ) (as(z + 00} — b)) =0 Vi=1,...,m
L AVER, AL eR™, Ay e R?

(2.3)

- where 04, i = i,...,m, is the i~th row of A.

It is worth po:mtmg out that the strict convexity of ploblem Pg:w
guarantees for any 6 € (0,¢) the uniqueness of the optimal level solution
z'(8} = z' + 0Ay; this implies also the following important property:

vector Ay is unigue and different from 0.

Let us now provide an useful preliminary lemma which suggests how to
study system (2.3). With this aim, let us define, the following sets of indices
based on the binding and the nonbinding constraints:

Bm{fz. air’ =b;, i=1,...,m} , N—{z iz >b1, =1,...,m}

Lemma 2.1 Let (¢, X') be a solution of (2.1). Then, for 6 € (0,¢) system

(2.8) is equivalent to:

o QA = ATA, + dAy
dTA, =1,
' Az’ + AN b
< o+ 0A,20 24)
=20, =0VieN
(08, =0, MazAm =0 YieRB

Proof The first and the second equations follow directly from (2.1) taking
into account that 8 # 0. From {2.1) we have also that the compiementaraty
conditions of (2.3) can be rewritten as:

,uiaz-Ax + Ay (e’ — b)) +0A a0, =0Vi=1,...,m (2.5)

For any index i € N and for 6 > 0 small enough it is (a;(z’ -+ 04,) = b;) # 0,
so that from (2.3) it results ] + 0A,, = 0. This last equation holds for any

4 > 0 small enough if and only if 1} = A, = 0; in other words it is:

pi=A, =0 VieN
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which also yields: .
Ap (s’ —b) =0 VYi=1,...,m

This equality implies that condltlon (2 5) holds for any ¢ € (0, €) if and only
ifforalli=1,...,mitis:

M;‘a’iAm =0, _Amaa‘Ax =0

and the result is proved. ' : .

Note that from the positivity of 8, the feasszhty conditions and Lhe
optimality ones, we also have:

0l >0 Vie B
Ay, >0 Vi€ B such that p;=0

As a conclusion, we can compute the values of the multipliers X, 1/, Ay, AP
Ay by solving the following overall system (which has 2+ 2m +n variables):

( Q' +q= ATy +adXN
QAL = ATA, + dAy,
dTA, =1,
p==2,=0 VieN
w >0 VieB
ale, > 0Vie B
HailAy =0Vie B
ApaiA, =0Vic B
Ay >0 VieB st pp=0
L N, ALV ER, LA, e R, Ay e R

(2.6)

_This systenis suitable for values of @ > 0 verifying the following conditions:

feasibility conditions  : Az’ + QAAw;_b
optimality conditions : p + 604,20

- Notice that system (2.6) is consistent if and only if the feasible regions Xy .
' of problems Py g are nonempty for 6 > 0 small enough.

In the case system (2.6) is consistent, we are finally able to determine the
values of 6 > 0 which guarantee both the optimality and the feasibility of
2'(0). Let N~ = {i € N: a;A, <0} (}); since Az'2b, from the feasibility
conditions we have:

9<I3’=‘ migieN» {b_—*——?—é:z':'} ifEN"#£0
- +00 ifN- =0

1Since § > 0 then inequalities ;A < 0 and a2’ + fas Ay >b; imply b; — a;x’ < 0, that
is to say that t € N.




where ' > 0. On the other hand, let B~ = {i € B: A, < 0} (recall that
Ay, =0 Vi€ N); from the optimality conditions we have:

9 < O - minz-eBm {*E"ﬁf"} lf B~ %@
- 4o B =0

where O > 0 (since 6 > 0 then inequalities Ay, < 0 and g} +64,, > 0 imply
@i > 0). Hence, z'(0) is .an optimal level solution for all # such that:

0 <6 < by, = min{F,0}
where 6,, > 0 (obviously, when system (2.6) is consistent).

2.2 Solving the multipliers system

The aim of this subsection is to show how system (2.6) can be improved in
order to deternine its solutions. For the sake of convenience, from now on
the rows of A and the components of b and p/ will be partitioned accordingly
to the set of indices B and N.

Multiplying the first and the second equations of (2.6) by A, ;é 0 and

takmg into account that @ is positive definite, it follows:

= (Q«’ +q)TAm and A,\zAngAm >0 @27

Multlplymg the first equation of (2.6) by d 7& 0 and after s1mple calculations
we also geb:

f- de (er tg-— AT,L!,’)

Let us now define the matrix D= (I e E%mddT); note that D is symmet-

rie, singular (since Dd = 0) and positive semidefinite (the n - 1 nonzero

eigenvalues are all equal to 1 since Dy =y Wy ¢ d'). Noticing that
dN = (I D) (Qa: 4 g - AT ’) and that pj = 0, we can rewrite the
first equation of (2.6) as follows:

DA% MB—D(Q$ 'HI)
The solution of this system is not unique in general; in particular note that:
rank(DAL) < min{n — 1,rank(4p)}

For the sake of convenience, let us now define the scalar § = a’j’fé_w_l_d >0

and the syrﬁametfic matrix Qg = (@~ — 6Q~1ddT Q1) which results to be
singular (since Qgd = 0) and positive semidefinite (for Theorem 2.1 in (8]



(?)). Since @ is nonsingular then, from the second and the third equations
of (2. 6) we get: :
' 1-d"QYATA, o 1T
Ay = ToTd =4-dd" QAT A,
A, = QTATA, 4+ Q7 HA, =8Q 7 d+ QuATA,
As a conclusion, we have the following expllcm solutions of system (2.6),
some of them depending on A, ,:

py = 0 ' SRR
Ay, = 0 '
Ay = Q7Y+ QuASAL,

XN = (Q2' +q)TA,

Ay = AlQa,

Note that the uniqueness of vector A, implies the uniqueness of A and Ay,

We are now left to compute the values of vectors yg and A ppe With thls
aim, for the sake of convenience, let vg = AgQ~'d and Rg = ABQdAT =
(ApQ~ 1AT - 5"3“3) Mairix Rp is symmetric and posﬂ:we gsemidefinite
{due to the semipositiveness of Qg) with: :

rank(Rp) < mzn{n -~ 1, rank{Apg)}

notice also that the ¢-th component of vp is v; = a;Q'd while the i-th row
of Rp is given by r; = (a;Q 1A% — dviv}), so that a; Ay = 1A, + dus.
Vectors pup and A, are then solutions of the following system:

( DALus=D(Q +4)
pp20
RBAMB + 6"{'3?—_-,0 (2 8) S -.,\_::;:f@f;]
pi(ridyy, +dv) = 0Vi€ B . P 1
Ay (rildyg +6v) =0Vie B - ’
L AL, >0V € Bs.t oy =0

Notice that the number of variables in system (2.8) is just QCard(B).

2.3 Optimal level solutions comparison

The optimal level solutions x'(#) obtained by means of the.éensitivity analy-
sis can be compared just by evaluating the function 2(#) = ¢ (2'(6)). Defin-
ing 2’ = 127Qx’ + ¢¥'a + go and recalling equations (2.7) it then results:

o/ (0)7 Qe (0) + 470/ (6) + a0 = £ Ar0+ X0+ 7

*Theorem 2.1 [8] Let @ € R™ " be a symmetric positive definite matrix, let k € R’
and let h € ®*. Then, the symmetric matrix A = (Q 4 khhT) is positive semidefinite if
and only if k& > '"HTQI—_% C )



Hence, since dTﬁv’(G) +dy = & + 6, we get:

(0 = $@O) = (308 X0+ ) (€ +0) + 02 (€ +0)

d d 7 ! | /-
S0 - §(wn002) st e

d
+f( A)\92+X¢9+ ) (§’+8)+ 202 (¢ 1 9)

so that, in particular:

dz df dg1 dgs ;..

FO =T ()0 @)+ () @) + @)
As it is very well known, the derivative @(O) can be useful since its sign
implies the local decreasing or increasing behaviour of z(8).

Level optimality is helpful also in studying local optimality, since a local

minimum point in a segment of optimal level solutions is a local minimizer

of the problem. This fundamental property allows to prove the following
global optimality conditions in the case of a convex objective function ¢(x).

Theorem 2.1 Consider pmblém P, assume ¢(z} convex and let 2'(8) be
the optimal solution of problem ?§’+9
i) zf (O) > 0 then d(x') < ¢(x) for all z€ B such that dx > d'x’
i) if Om < -§~o_0 and 8 = argmingegg g1 {2(6)} s such that 0 < § < b,
then z'(0) is the optimal solution of problem P.

Proof Since ¢(z) is convex any local optimum is also global. The results
then follow since a local minimum point in a segment of optimal level solu-

- tions is also a local minimizer. | [

3 A solution algorithm

In order to find a global minimum (or just the infimum) it would be necessary
o solve problems ?5 for all the feasible levels. In this section we will show
that, by means of the results stated so far, this can be done algonthmma.ﬁy
in & finite number of iterations.

" The solution algorithm starts from a certain minimal level and then scans
all the greater ones looking for the optimal solution, as it is pointed out in
the next initialization process.

Initialization Steps
Compute, by means of two linear programs, the values (3):

Emin = inf dTz + do ,  Emen 1= SUpP dTz + dg ,‘
zeX zeX -

3Obviously, it may be &min = —00 and/or fmm; = 4.

8



One of the following cases occurs:

1) if &min > —o0 then solve problem P from the starting feasible level
Estart = Emin up to the level £ong = Emax;

2) if &min = —00 and gy < 400 then let §1(€) = g1(—£€) and §(€) =
g2(=£), so that the objective function of P can be rewritten as:

é@(m) =f (%xTQﬁ +qlz+ %) g1 (—deﬂ - do) + go (—dT:B ~.do)

We can then solve problem P using §, and §» and scanning the feasible:

levels from the starting value &sgrt = —Emar > —00 UD 0 Eeng = +003
3) if &min = —00 and €pge = +00 then solve sequentially the next two
problems from the starting level £gqp¢ == 0 up to the level £,q = +o0:
inf f(z) inf f(z)
Po:d dla+dg>0 and P_:{ dla+dp<0
ze X re X

where P.. is defined using §; and go.

O

Once the starting feasible level £g4qps is found, the optimal solution can
be searched iteratively by means of the following algorithm.

Algorithm Strucfure

1) Let 6’ = Eatart; g = argmin{?ﬁstarf}Q UB = ¢($’); z* = al;
unbounded:= false; stop:= false;

2) While not stop do

2a) With respect to & and 2’ determine u/, X, Ax, Ay, Ay, P, 0,
" B = min{F, O}

2b) If infoepo g,,) 12(0)} = —oo then unbounded:= true

else f = arg minge(p g,,) {z(é?)},
2¢) If unbounded== true or {qﬁ(m) is cozzvex and % (O) > 0}

then stop:= true

else begin

-1 2(7) < UB then z* := 2/ () and UB := 2 (0);

- & + 0, > Eng or {@(z).is convex and 0<8 <8}
then stop = frue
else ' 1= 2" + 0 Dy; & 1= & 4 O



end;

3) If unbounded== frue then infzex ¢{z) = —oo else 2* is the optimal
solution for problem P.

Variable U/ B gives in the various iterations an upper bound for the op-
timal value with respect to the levels £ > ¢, while z* is the best optimal
level solution with respect to the levels ¢ < &. Let us also point out that:

e in Step 1) we have to determine the optimal solution of the strictly
convex quadratic problem Pe,,,.,; actually, this is the only quadratic
problem which needs to be solved within the solution algorithm;

e in Step 2a) the multipliers have to be determined by solving a system
whose dimension has been reduced as much as possible (see Subsection
2.2 and system (2. 8) notice that these multipliers do not depend on
the chosen functions f , gr and go; in the next section we will show that
this step can be improved in the case of box constrained problems;

e in Step 2b) we have to determine the minimum of z(6) for 6 € [0, 8y,];
notice that z(#) is a single variable function and that its minimum over
the segment [0,8,,] can be computed with various numerical methods, :
notice also that Step 2b) is the only step which depends on the chosen
functions f, g1 and go;

o finally, it is worth noticing that for particular classes of functions this
solution algorithm can be improved and detailed; in other words, for
particular functions f, g1 and g, the algorithm can be optimized for

. convex functions ¢, and/or the multipliers in'Step 2¢) and the value of
@ in Step 2b) can be determined analytically (see for all [4, 6, 7, 8, 18]).

Once Step 2b) is implemented, the correctness of the proposed algorithm
follows since all the feasible levels are scanned and the optimal solution, if
it exists, is also an optimal level solution. As regards to the convergence
(finiteness) of the procedure, note that in every iteration the set of binding
constraints B changes; note also that the level is increased from ¢’ to &'+ 8y,

so that it is not possible to obtain again an already used set of binding

constraints B; the convergence then follows since we have a finite number
of sets of binding constraints.

In particular, if 8, = +o0 an halfline of optimal level solutions is found
and the algorithm stops. Consider now the case 8,, < +oo; if O = F then
at least one non binding constraint enters the set B; if O, = O then at

least one of the positive multipliers corresponding to a bmdmg constraints

vanishes, so that the related constraint will leave the set B in the following

iteration.
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4 Box constrained case

The aim of this section is to deepen on the results stated so far in the
particular case of box constrained problems:

P, { inf $(z) = f (37 Qu + 4"z + q0) g1 (475 + do) + go (¥ + o)
‘ € X8 ={z e R I<z<u} :

where I, u,d € ®*, d > 0 (4). Obviously, all the other hypotheses required
in Section 1 are assumed too. By means of the general approach described
in Section 2 we have:

— mmzmTQ;t:+q T+ go
P
e XP ={zeR: l<a:<udTa:-|—d0~£}

Note that the feasible region X £B i no more given by box constraints.

Clearly, this class of box constrained problems can be solved by means
of the solution algorithm described in Section 3. With this aim, notice that
it Tesults Esgare = Emin = A1+ do and €end = Emae = - u + dg, and that the
only strictly convex quadratic problem which has to be explicitly solved in
Step 1) is:

. m1n29:TQ$-I-q $+q0 o
Pepore zi=1; Vi=1,...,n suchthat d; >0
i<z <wu; Yi=1,...,n suchthat d;j =0

In the rest of this section we will point out how the solution method can be
improved in the case of box constrained problems, in particular with respect.
to the calculus of the multipliers in Step 2a).

4.1 Incumbent problem

. Let 2’ be the optimal solution of problem P, let & = d'z +d.0 € [Emin, Emaz),
and let us define, for the sake of convenience, the following partition LU U
N U Z of the set of indices {1,...,n}:

L=1{i: =zj<w} , N={i: i<z <u}
U={i: l; <z =u} . Em{i:lizx'i:ui}

Since P is a strictly convex problem, =’ is its unique optimal solution if
and only if the following Karush-Kuhn-Tucker condztlons hold (5):

“Notice that the d > 0 assumption is not restrictive, since it can be obtained by means
of a trivial change of the variables z; corresponding to the components d; < 0.

SIf |  u, that is {; = u; for some indices 4, the Karush-Kuhn-Tucker conditions are
sufficient but not necessary since no congtraint qualification conditions are verified. These
indices will be handled implicitly in the rest of Lhe paper by properly choosing the values
of the multipliers.

11




( Qr' +g=X+a-0
dT ' + dQ = €’, :
I<#'<u feasibility (41)
] az0, 820, - optimality LN
ol ~1)=0, F%u~—2")=0 complementarity
- AER, o, BER”

Denoting with Q; the i-th row of (2, we can rewrite these Karush Kuhn-
Tucker conditions as follows:

=0, =0, Qiz' +g; =0 Vie Nst. d;=0
0; =0, f; =0, A= 7 (Qir' +¢) Vi€ Nst. d ;é@
Bi=0, oy =@z’ +q—Ad; 20 Viel
=0, fi=Ady~ Qsx' ~qs >0 VielU

o; = max{0,Q:x' + ¢ —Adi} =20 Vie E

B =max{0,N\d; — Q' ~ ¢t >0 VieE .

| ATz +do=¢, ISz<u

Let Z = {i: d; # 0}. Since d > 0 it results:

/\— 1(sz +q) YieNNZ
7 (Qi +gq) YieLnZ
| ' (sz +g) VieUNZ

Given the optimal level solution z’ for problem Py the multipliers X, o/, &'
can then be computed as follows, First, notice that when (LUNUU)NZ =0
then the linear function d¥ z+ dg is constant on the box feasible region, that
is to say that the problem admits one unique feasible level and is then trivial.

Assuming (LU N UU)N Z # 0, we can determine the value of N as

described below:
Q%fﬂi,foranyieN{?Z fNNZ#0 |
N = miniernz {%ﬁi} HNNZ=0and LNZ#D (4.2)

maxzemz{g%’i”ﬂi} fNNZ=0and LNZ=0

Then, the components of ¢ and 6’ can be obtalned as follows:

0 Vie NuU
O:.’i = Qix’ + g — Nd; Vie Ll (4.3)
max{0,Q;z’ + ¢ — Nd;} ViekE
0 - YVieLUN -
' ﬁ,: = _)\’di — Qi:c’ — i Viell (4.4)

max{0, Nd; — Q;x' —q;} ViecE

Let us remark that, unlike the general case of Subsection 2.1, we have
been able to determine explicitly the values of all the multipliers of the
Karush-Kuhn-Tucker conditions regarding to ”ﬁg.

12



4.2 Sensitivity analysis

In the light of the optimal level solution parametrical approach we now have
to study the optimal solution of problem Hf_j'g_‘_g, with 6 > 0. In order to avoid
trivialities, we can assume & < €pyqn. Since the Karush-Kuhn-Tucker system
is linear whenever the complementarity conditions are implicitly handled,
then the solution of the optimality conditions regarding to Py ¢ results:

20 =2’ + 00y, N(B) = X + 04,
o/ (0) = of + 00, , B(8) = +6Ag

g0 that it follows:

Q(a: +0A:) +q={a'+80,) — {F + 80g) + d{N + 0A,)
dl (2 + 0A) +do =& + 6
<2’ + 80 <u : (4.5)
| o + 00,20, B + 00520
(o' +0A )T (@ + 08, — 1) =0, (B +0A5)T(u~2" = 0A;) =0

Since 2’, X, ¢/ and ' are known, we are left to compute Am, Ay, Aa, Ag.
With this aim, let us provide the following iemma

Lemma 4.1 Let (X,c/,8) be a solution of (4.1). Then, for & € (0,¢)
system (4.5) is equivalent to:

( QAy = Dy — Ap + dAy,
A, =1
12" + 008, Zu
o + 08,20, B + 00520
AV =0Vie E (4.8)
Ap, =0Vie NUU
Ap,=0V¥i€ LUN
0Dy, =0, DgyDy, =0 Vi€ L
| BlDg, =0, Ay, =0 VieU

Proof The first and the second equations follow directly from (4.1) taking
into account that @ s 0, while Ay, = 0 Vi € F follows directly from the
definition of E. From (4.1) we have also that the complementarl’sy conditions
of {4.5) can be rewritten as:

Ag(ui — ) — BiDe, — 085,05, =0 Vi=1,...,n

Since 8 € (0, €) these conditions hold if and only ifforalli=1,...,n:

FAVS &% w ), A@.Am =0 : (4.7)
Aag( ) + o Am i 0 , Aﬁi (‘U,?, - :J:;,) — ﬁiAmZ =0 (4.8)
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Noticing that zh 4+ 80y, < u;forallie LUN and for # > 0 small enough,
from the compiementarity conditions (5] —|—9A 8,) (i~ —8A,,) = 0 it yields
B! 4 8Xg, = 0; analogously, we also have o + 04,, = 0 forallie U U N .
- Since ¢ > 0, for {4.3) and (4.4) these cond1t1ons imply:

Ay, =0Vie NUU , Qg =0¥ie LUN

so that:
Aai(fﬁ;—li)mi\ﬁi(w—mé)=(} Vi=1,...,n
and the result is proved. o -

Note that from the first and the second equations of (4.6) and from the
positive definiteness of Q) we obtain again A, # 0 and:

Ay =ATQA, >0
while from {4.3), {(4.4) and (4.6) we have:
A, = 0Vie LUE such that of =0
Ag, > 0Vi€ UUE such that =0
From the two last conditions of (46) it yields:
A, =0Vi€Lstaj>0,VieUst B3>0

As a conclusion, we have the following explicit solution, dependmg on Ag,
of the multipliers in (4.6):

A, = ATQA
0 Vie NUU
Aa?’, L= Qi — didy C Vie L
Inax{O, Q%Am - d»;A)\} Vie E
' 0 Vie LUN
Ag, = dildy = Qg VielU

ma,x{(}, d;Ay — Qi) Vie E

In order to determine vector A, it is worth using the partitions L = LyULy
and U = U, U Uy defined as follows:

Ly={icL: a'>0 , Loy={i€L: of=0}
Up={icU: f;>0} , Up={ieU: g =0}
Vector A, is then the unique solution (recall that _P_§I+'9 is a strictly convex
problem) of the following system:
o ( Qildy = ;ATQA, Vie N -
Dy, =0VieL, ViclU,, Vie E . 49)
(Qily — ATQALA,, =0 Yie LaUly . ’
Qi'Aw = daagQAo: 3 Ami =2 0 Vie LO
. diAg‘QAac > Qilg , Dy, S0 Vie U
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which is suitable for values of § > 0 which verify the following conditions:
feasibility conditions : 1<(z' + 0A;)<u
optimality conditions : of+ 00y, = 0Vi€ L, Bi+0A5 >0VicU
Notice that only the components Ay, such that i € Ly U N U Uy are left to
be determined in (4.9). Notice also that the assumption & < &ng, implies
LUN # (. We are finally able to determine the values of § > 0 which guar-

antee both the optimality and the feasibility of z'(9). From the feasibility
conditions we have: :

!
. . . g — xk min l; —
f < F = min min {—-f-—m—ﬂf‘-} e
: 1€ LoUN: Ag; >0 | Ag, ! ieNUip: Amz<0 Ay,

Let us recall that whenever E < Epan then Ay #£ 0, LU N # () and hence
F > 0. On the other hand, denoting L, = {i € Ly 1 Ay < 0} and
Uy ={i€ly: Ap <0}, from the optimality conditions we have:

. . ! . 8
9<0= min {mm@ew{wzai},mmiw; {”‘A‘g“}} : sz UU # 0
+o0 if Ly U Up‘ =0
so that O > 0.
As a Consequen(:e, Z'(f) is an optimal level solution for-all # such that:

OSGSQm-mm{ﬁ‘C)}

where 0, > 0 whenever & < &pas-

4.3 Box constraints and diagonal matrix Q

In the case matrix @ is diagonal several further improvements can be done

~ to the solution method. In particular, it is possible to explicitly determine

all of the multipliers in the Karush-Kuhn-Tucker system. The results which

are going to be given in this subsection have been already stated in [§].
First of all, notice that the parametric subproblem ?g becomes:

B, . mmzmTDw—}-q T+ go
¢ ze X ={zeR: l<m<udTm+dg—§}

where D = diag(édy, ... ,6n) € RM", 6 > 0Vi=1,...,n. As a preliminary
result, it is worth pointing out that it is possible to determine explicitly the
optimal value for all the variables z; such that d; = 0 (see [8]).

Theorem 4.1 Consider the subproblems Pe, with £ € [Emin, émaa]. Then,
for all indices i = 1,...,n such that d; = 0 the optimal level solution is
reached ot ‘ '
' Lo —~§<h
xr=4 w i - %’j > U
——%‘2} if I < W%’;‘ < Uy
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As a consequence, the feasible region can be reduced a prz'ori,‘ without
loosing the optimal solution, by means of the following commands:

o if w% < I; then set u; :=1; ,
. if_w«gf > uy then set [; =1y ,
o if ] < ——g—:} < wu; then set [; := —% and u; 1= _% .

From now on we can then assume that:
i€ Eforalii=1,...,n such that d; = 0. (4.10)
where LUUUNUE = {1,...,n} with:

L={i:l¢#$;<ui}_ , N="{i: l; <z} <u}
Um{i:li<$£=ui} N E={£:li=$’z—=ui}

Notice that assumption (4.10) implies also Xéi ., = {l} and ngn L = {ul,
so that there is no need to solve the starting quadratic problem P, , in
Step 1) since we can simply choose &' := {. _

By means of assumption (4.10) and the results stated in the previous
subsections, the following explicit solutions of the Karush-Kuhn-Tucker sys-
tems can be determined (see also [8]):

6%?, foranyie N iN#D

N = minger {8541 i N'=0 and L #0
'Ii’iaxieU 5&;;}-1} ifN:@andL_:@
0 Yie NUU
O.'é = : &ily + q; Nd; Vie L
max{(], &il; + 4 — Xdi} Vie |
. 0 Vie LUN
B = Nd; — dyu; — g VielU

max{0, N'd; — dju; — ¢} Vie E
By defining the following further partition of indices L = Lt UWLO:
Lt={ieL: o[>0} , I°={icL:al =0}
|! _ we also have that (see [8]):
1

Ay = oo )

‘ za‘eLﬁuNE%;d? :

A 0 ifi€ LTUUUE
@i ' A,\%‘po\ e LOUN
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A - 0 if i L*
% T Y —ANd; <0 ifielt

Ae = 0 ifieLUN
BT Y A >0 HicUUE

Finally, notice that it is:

min%ELDUN{E:S“?‘;} if LOUN?'L‘@

o

[l
s s,
<

if LOUN =0
é i minieLq- {i%} if L.'i_ 7/: @
' +00 LY =0

where 0, > 0 if and only if z' o u,
As a conclusion, let us point out that:

e in Step 2a) all of the parameters of the solution algorithm can be
computed explicitly without the need of solving any further system;

» since 2'(f) and «’'(8) are, respectively, increasing and decreasing with
‘respect to ¢ (this follows from the nonnegativity of A, and the non-
positivity of A,) then, it can be proved that the algorithm stops after
no more than 2n — 1 iterations (see [8]).

In [8] the solution method has been studied and specified for the particular
case of f(y) = y, g1(y) = 1 and ga(y) = %ky?; the obtained algorithm has
been fully implemented in a symbolic calculus environment and the results
related to a deep computational test have been presented.”
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