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Abstract

Quantile regression investigates the conditional quantile functions of a response variable
in terms of a set of covariates. M-quantile regression extends this idea by a “quantile-
like” generalization of regression based on influence functions. In this work we extend
it to nonparametric regression, in the sense that the M-quantile regression functions
do not have to be assumed to have a certain parametric form, but can be lefs unde-
fined and estimated from the data. Penalized splines are employed to estimate them.
This choice makes it easy to move to bivariate smoothing and additive modeling. The
asymptotic properties of model estimates are sketched and an algorithm based on it-
eratively reweighted penalized least squares to actually fit the model is also proposed.
Simulation studies are presented that show the finite sample properties of the proposed
estimation technique. The method is then applied to small area estimation for the pre-
diction of the mean Acid Neutralizing Capacity for each 8-digit Hydrologic Umt Codes
in the Northeastern states of the US..

Keywords: Small area estimation: Robust regression; Natural Resources Survcy, Iteratively
Rewelghtcd Least Squares.

1 Introduction

Regression analysis is a standard tool for modeling the relationship between a response
variable ¥ and some covariates z. It summaries the average behavior of y given @ and has
been one of the most important statistical methods for applied research for many decades. .

However, in some circimstances the mean does not give a complete picture of a distribution.
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It does not éonSider, for example, the extreme behavior of ¥ conditional on @. For this reason,-
a method that allov;rs for direct modeling of the relationship between'tﬁe dependent varia,ble
and the explanatory variables for these extréme values is needed. In other words, it may be
useful to investigate the cbndétionai quantile functions. Such a modeling exercise is referred
to as gua,ntile regression {Koenker & Bassett, 1978; Koenker & D’Orey, 1987). Quantilé'
regression has beén widely used in a broad range of appii.cation settings: from financial
economics (see Hendricks & Koenker, 1991; Manning et al., 1995) to labor markets studies,
which beﬁéﬁt fr'om quantile regression for ema,lyzing wage and income data (Buchinsky,
1994). Other applications concern ecclogy (Pandey & Nguyen, 1999), event history analysis
(Koenker & Geling, 2001} and medicine {Cole & Green, 1992). |
M—quantiie regression extends this idea by a “quantilemiiké” generalization of regression

based on influence functions (Breckling & Chambers, 1988). For a specified quantile ¢, in
a linear M-quantile regression model the quantile is & linear function of thepreciictofs, ie.
Qq(x, ) = xBy(g), where 1 denotes the influence function associated with the gth M-
quantile. Practical advantages of M—qu'a,nﬁle regression over guantile regression are (a) the
-guarénteed convergence of the algdrithnl used to a single solution and (b) the enhanced
flexibility associated with the chosen influence function. While lnonparametric smooﬁhing
has been usefully applied to quantile regression (see e.g. He, 1997; Takeuchi, Le, Sears &
Smola, 2005), little or no work has been done on extending M-quantile regression with .
nonparametric modeling. Our proposal is to ex'tend it by‘ using penalized splz’nes. (Eilérs &
Marx, 1996; Ruppert et al., 2003). | |

"~ The outline of the paper_is the following. A short review on M—qﬁaﬁtiie reéressiorz is
in Section 2. In Section 3 nonpé;rametric M-quantile regression based on penalized splines
is introduced and its properties studied. Tn Section 4 we report on the results from some
simulation studies. The attention is on the performance of the proposed method when a single
covariate model expresses fhe true underlying reldtionship between y and z, and especially
when a bivariate mbdel is considered. This second cé.se is meanly relevant to test the empirical
properties of the method when the study variabie has a clear spatial paﬁtern as a function of
its position in space represented by its géographical coordinates. In Section 5, we extend the

M-quantile small area estimation approach of Chambers & T'zavidis (2006} to the sefting



- in which the functional form of the felationship between the variable of interest and the
covariates is left unépeciﬁed. A nonparametric model could have significant advantages when
the functional form of the relationship between the variable of interest and the covariates
is not linear é.nci an erroneous specification of the model can lead to biased estimates. The

method is then applied to the estimation of the mean Acid Neutralizing Capacity for each
8-digit Hydrologic Unit Codes (HUCs) in the Northeastern states of the US. Here a survey
of 334 lakes in a population of 21,026 has been conducted between the years 1991 and 1996.

Finally, in Section 6 we present and discuss our main findings.

2 M-quantile | regression

Quantile regression is a generalization of median regression and has been develof;@d by
Koenkei & Bassett (1978). In the linear case, quantile regression leads to a family of hyper'-l
planes indexed by the value of the corresponding quantile coefficient ¢ & (O; 1). Given a
set of covariates @ and a response variable y, for each value of ¢ the corresponding model
Qo) = xB(g) explains how the q“f guantile of the conditional distribution of y given z
varies with @. The set of regression quantiles pa.rainéter estimates satisfies the criterion of
minimum sum of absclute asymmetrically weighted residuals: given a sample of n observa-

. tions, the vector 3(g) is estimated by minimizing

2 RIB@IA - I(r[8()] < 0) +ql(n]B(g)] > 0)},

=1
where 7:18(¢)] = v — 2:8(q), with respect to B(g) by using linear programming methods
(Koenker & D'Orey, 1987).

Note that regression gquantile hyper-planes are not comparable with the regression ones
based on ordinary least-squares that describe how the mean of Y 'changes with (Brecﬁding &
Chambers, 1988). In fact, the former are based én an absoiﬁte deviations criterion, while the
latter on a least-squares one. A first generaﬁzatioﬁ of expectation was suggested by Newey
& Powell (1987) through the use of ezpectile lines. M-quansile regression furthef extends this
idea by a “quantile-like” generalizatidﬂ of regression based on influence functions (Breckling

& Chambers, 1988). In particular, Q,(x, 'l/)l) = x3,{g) and the general M-estimator of 3,(q)



can be obtained by solving the set of estimating equations
7 ) _
}:qu(% - miﬁw(@))m? =0 : . 1)
- gzl ‘ ‘

with respect 50 8,(q), assuzﬁing that

olt) = 205~ (1 — g)(t < 0) +qI(t > 0)}

where s is a robust estimate of scale. Robust .regression models can be fitted using an Iterative
Reweighted Least Squareé algorithm (IRLSV) that guarantees the .convergén'ce_to a unique
solution (Kokic et al., 1997). '

The advantages of M-quantile regression models are (a) the simplicity of the algorithm
tsed to fit the model and (b) the great flexibility in modeling by using a wide range of influ-
ence functions (i.e. Huber function, Huber proposal 2, Hampel function). A draﬁbaok for all
guantile-type fitted regl;ession plans is the phenomenoii of quanti}e‘ crossing and it is due to
model misspecification, collinearity or huge outlying values. He (1997) proposes & resiricted -
version of regressién quantiles that avoids the occurrence of érossing while maintaining suffi-
cient modeling fexibility. Another method to overcome this problem is described in Koenker
(1984) by forcing proper ordering of the percentile curves. 'I“he author considers parallel
quantile planes for linear mocieis, but they do not cater to the needs of heteroscedastic

“models. | '

In the following section, M-quantiles are extended through nonparametric regression to

allow foi- unknowﬂ and maybe complicated relationships between thé' covariates and the

response. We will estimate them through penalized splines.

3 Penalized Splines M-quantile Regression

3.1 The method

Nonpammetric regresséoh is a popular technique that extends linear regression by relaicing
the assumption of a pre—si)_eciﬁed functional .relationship between the mean value of y and
the covariates . Such relationship does not have to be assumed linear ot polynomial, but
only an unknown sméoth function. Techniques like kernels, local polynomiaés or smoothing

splines can then be used to learn this function from the data (see e.g. Hastie et al., 2001,
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for a review of techniques). Smoothing has been usefully applied to quantile regression (seo
e.g. He, 1997; Takeuchi, Le, Sears & Smola, 2005), but little or no work has been done on
extending M-quantile regression with nonparametric ?nodéling. Here we will do so by using
penalized splines. Pénaﬁzed splines are now often referred to as p-splines and have been
recently brought up %o attention by Eilers & Marx ('1996).'Pmsp1ines provide an attractive
smoothing method for their simplicity of implemen‘o&tion, being a relatively straightforward
extension of linear regression, and flexibility to be ihcdrpol_‘ated iﬁ.& wide range of modeling
contexts. Ruppert, Wand & Carroll (2003) provide a thorough treatment of p-splines and
their applications. ' '

Let us first consi&r only smoothing with one covariate x;; we will then move to bivariate
smoothing and semiparametric modeling. Given an influence function ), a nonparametric
model for the ¢ quantile can be written as Qq(x1,¢) =" Ty, q{21), where the function
My q(+) i unknown and, in the smoothing context, usually assumed to be continuous and
differentiable. Here, we will assumie that it can be approximated sufficiently well by the
following function ‘

K

Mopal21; B (0, (0] = Bola) + Bras(@s + -+ Bop(@02 + 5 (@) — ), (2)
ko]

where p is the degree of the spline, (¢£)} = 7 if ¢ > 0 and 0 otherwise, sy for k=1,..., K
is a set of fixed knots, By(q) = (Boy(0), Bru(Q), - .-, Fop(q))? is the coefficient vector of the
- parametric portion of the model and *yw(q_)l = (y15(q), ..+, Yrey(g))7 is the coefficient vector
for the spline one. The latter portion of the model allows for handling nonlinearities in the
sﬁructure of the relationship. If the number of knots K is sufficiently large, the class of
functions in {2) is very large and can approximate most srﬁooth functions. In particular, in
the p-splines context, a knot is placed every 4 or 5 observations at uniformly spread qua,ntiles
of the unique values of ;. For large datasets, this rule-of-thumb can lead to an excessive
number of knots (and therefore parameters), so that a meximum number of allowable I{noté,
say 40, may be recommended. Note fhat, on the contrary, the degree of the spline does not
have to be particularly large: it is usually taken fo be between 1 and 3. The spline model
(2) uses a truncated polynomial spline basis to approximate the function iy q(-). Other

bases can be used; in particular we will later use radial basis functions to handle bivariate
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sfnoothing. More details on bases and knots choice can be found in Ruppert et al. (2003,
Chapters 3 and 5). | '

Given the large number of knots, model (2) can be over-parametrized and the resulting
approximation would look too wriggly. The influence of the knots is limited by putting a
constraint on the size of the spline coefficients: typically Somy 72,(@) is bounded by some |
‘constant, while the parame"cﬁlc coefficients 3,,(q) are left unconstrained. Therefore, estima-
tion can be accommodated by rﬁimicking penalization of an objective function and solving
the following set of estimating equations '

PR Oi4p -
S el — @B, (0) — 27 (0)) (i, 2)7 + X [,;;(q;] = Opuipiic) (3)

faml |
where «; here is the -th row of the n % (1 + p) matrix |
T oxqyy v :ﬁ}‘l}l ‘
1 Ty o o,
while z; is the i-th row of the n x K matrix
T en=ml o (o -
(Zin — w0} o (T — Kx)h
and A is a Lagrange multiplier that controls the level of smoothness of the resulting fit.” Note
that the set of estimating equations (3) resembles that employed in the linear case in (1)
excluding the penalization bit of the spline portion of the model.

The following section explores asymptotic properties of Bw (g) and 9,(g), while Section
3.3 provides an algorithm to effectively compute them. Once those estimates are obtained,
Mg.al1] = Maygl1; By(q), ¥4(q)] can be computed as an estimate for @z, ¢). The ap-
proximation ability of this final estimate will heavily depend on the value of the smoothing
parameter A. Generalized Cross Validation (GCV) has been usefully applied in the context
-of smoothing ‘splines (Craven & Wahba, 1979} and will be used here too. Details on the
criterion are given in Section 3.3.

As we have just dealt with flexible smoothing of M-quantiles in scatterplots, we can now

handle the way in which two continuous variables affect the M-quantiles of the response
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without ‘any structural assumptions: Qo @2, ) = My (T4, 22), Lo, we can deal with bi-
variate smoothing. 1t is of central interest in a number of application areas as environment
and public health. It has particular relevance when geographically referenced responseé need
to be converted to maps. As seen earlier, p-splines rely on a set of basis functions to handle
nonlinear structures in the data. Bivariate smoothing requires bivariate basis functions; Rup-
pert et al. (2003, Chapter 13) advocate the use of radial basis functions to derive Low-rank

thin plate splines. In particular, we will assume the following model at quantile g for unit

Miapyq |10, T2 Byla), ’qu(Q')] = Boplq) + Brelg)e + Boy(g) 2 + zimvy(a)- (4)
Here z; is ‘511(% i-th row of the following n x K matrix

Z = (O = ) psizy (Ol = )2 6

ey
where C(#) = ||t log ||t]|, & = (zu, :1:27;). and ki, k=1,..., K arc knots. The derivation of
fhe Z matrix as in (5) from a set of radial basis functions is lengthy and goes beyond the
scope of this paper; Ruppert et al. (2003, Chapter 13), Kammann & Wand (2003) and French,
Kammann & Wand (2001) give a thorough treatment of it. Here, it is enough to notice that
the C() function is applied so that in the full rank case ~ L. when knots correspond to
all the observations ~ the model for classical bivariate smoothing leads to Thin plate splines
‘(see e.g. Green & Silverman, 1994). In addition, the second part of the right hand expression
in (5) is a ﬁmnsfo'rmation used so that the estimation procedure simplifies; in particular, it
© can again be written as in (3), with #; = (1,%&;). | }

The choice of knots in two dimensions is more chailenging than in one. One approach
could be that of laying down a rectangular lattice of knots, but this has a tendency o waste a
lot of knots when the domain defined by z; and 25 has an 'irregﬁlar shape. In one dimension
a solution to this issue is that of using quantiles. However, the extension of the notion
of quaﬁ._tiles to more than one dimension is not straightforward. Two solutions suggested
in literature that provide a subset of observations nicely scattered to cover the domain
are space filling designs {Nychka & Saltzman, 1998) and the clara algorithm (Kauﬁnan &
Rousseeuﬁv, 1990, Chapter 3). The first one is based on the maximal s‘epéraiaion principle of

K points among the unique &; and is implemented in the fields package of the R language



(R Development Core Team, 2005). The second one is based on cluétering and selects K
representative objects out of n; it is implemented in the package cluster of R. |

It should be roted, then, that the estimating equations in (3) can be used to handle
univariate smoothing and bivariate smoothing ‘by suitably changing the parametric and the
spline part of the model, ie. once the X .a,nd the Z matrices are set up. Finally, other
continuous or‘categoricai variables can be easily inserted pai‘ametrically in the model by
addin% columns to the X matrix. This allows for semipsrametric modeling, as intended in

Ruppert et al. (2003), to be inherited and applied to M-quantile regression.

3.2 ASymptotic properties

The asymptotic properties of @w(g) and 4,(g) will be briefly discussed by using the results
in Breckling & Chambers {1988) on M-quantiles of a univariate distribution and those in
Huber (1981, Chapter 7) on robust regression. In géner&l, the asymptotic properties of the
. parameter estimates will be related to thbse obtained for the M-median, which in turn
depend on the shape of the influence curve given by ¢ (see the discussion on the choice of
¥ in 'Serﬂing, 1980, Chap-ter 7}. Here, complications arise as of bias (i} in the M-quantﬂe
context, from thé fact that for q # 0.5 the influence function is ékewed asymmetric and (ii)
in the p-splines context, from the presence of the faenaéization A in the estimation procedure.

Let F dénote the distribution of y given @« underlying the data and
QF(Q) = | [ ey — Q)AF (yl). Tﬁen the M-guantile of ordef q is defined as the solution
TGy, ) of ¢ (@) = 0. For simplicity here, let us consider only the univariate case for which
the M-quantile takes the spline form in (2) aﬁid let 77, (q) = (By(@)", v, (@)")T. For a sample
Y1, -, ¥n from F, the penalized M-estimate is the solution #,,(¢) to equation (3) in which -
'the penalty ), and the number and position of knots are considered fixed. The gross error
sensitivity d.epends on p = max(g,1 ~ q) and so does the dsymptotic bias of #,(q). The
asymptotic bias also depends on the penalty A. In fact, fof a given A, Ay(9) resembles a ridge
regressicjn estimate, to Whi:ch it reveft’s when 9 is the identity function.

Now, 7,(g) is a consistent estimator of 9,(g) and the asymptoﬁic distribution of #,(g)
can be written as o

n/2(01,(a) = (@) & NO,V(iyla)),



e [ ¥ = Qular, ¥)dF (5l
. P Y — &y CC,’Q/‘) dF Yy
V — g
) = T Ry )P |
provided (&(Q,(x,%)) # 0. For this result to hold, 1+ p+ K remains fixed and the following

conditions should be satisfied (Yohai & Maronna, 1979; Huber, 1981, Chapter 7):

(x 21"1x 2))7,

o the design matrix [X Z] has full rank (1 + p + K) and the smallest eigenvalue of
[X Z\"[X Z)] tends towards infinity;
e 1p{z) is nondecreasing and bounded;

e the errors are i.i.d. and such that Er(2(y — Qi) = v < oo and Ep(ibg(y; — Q) =0.

In addition to the previous classical assumptions for robust regression estimatesl, assump-
tions on the behavior of A as n grows should be made. In particular, we will reQuire that
limnqoo_ n7 A, = A.. In other words, consistency of the est'uﬁates holds. if A remaing con-
.stant ér goes to zero as n growé, or if A grows with n but at a slower rate. Note that both
the a,Symptotic bias and the variance of the asymptotic distribution will depend on g. In-
particular {e.g. Bfeckling & Chambers, 1988, Section 2), for the Huber's Proposal 2 Itype
' estimator; both the asymptotic bias and variance would increase without bound as ¢ tends

towards zero or one.
3.3 The algorithm

Let us rewrite the set of estimating cquations in (3) as follows

Z Vo "“.ui??ep(Q))U;'r + /\anp(‘i'} = Orrapri)s (6)
is=1

where u; = (@, ), M,(q) = (By(@)7, ¥4 (0)T)Tand G = diag {0p4py, Lic }. If we define the

weight function wie) = ¢(e)/e and let w; = w(e;), then (6) can be written as

n v
sz‘(% - uﬂhp(?))u? + AG’?;&(Q‘) = O1apaK)-
f==1

‘Solving this set of estimating equations is a penalized weighted least squares problem in
which weights, residuals and coeflicients depend one upon another. Further, the value of the

smoothing parameter A has to be chosen. The GCV criterion to be Optimized (minimized)



to this end is the foliowing

| RN
GOV = e

where S is the smoother matrix associated with my,g[udl, 1e. hyglw] = {Sihy and |
Yy o= (Y, ... ,yn)T, and 8 is a constant that penalizes additional degrees of freedom given
by the trace of the smoother matrix. | -

~An iterative solution-to this problem through Ilteratively Reweighted Penalized Least
Squares is here proposed. In what follows we will considef the influence function ¢ and
the quantile of interest g fixed; we will then drop suffixes and indexes for ease of notation
when this will not lead to ambiguity. The algorithm is the following:

1. Select initial estimates n°.

2. At each iteration ¢, calculate residuals e = y; — D and associated weights
w{™Y from the previous iteration. '
3. Optimize the GCV(X) criterion over a grid of A values and obtain A*.

4. Calculate the new weighted penalized least squares estimates as
' = [UTW“”’})U + ,\*G] - UTw Dy,
where U = {u;},_, ., and W = diag {wgtmi)} is the current weight matrix.

Iterate steps 2, 3 and 4 until convergence. R code that implements this algorithm is available

from the authors.

4 Simulation studies

In this section we report on some Monte Carlo simulation studies carried out to investigate
the performance of the p-splines M-quantile regression — PSPL ~ as compared to standard
linear M-quantile — LIN. We first report on simulations with a single covariate and then move

to the bivariate case.

4.1 A single covariate

The following four models are used to generate the true underlying relationship between the

covariate z and the response variable y:
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Linear. m{z) = 1+ 2(z — 0.5);

Exponential. m{z)} = exp(6z)/400;

Cycle. m(z) = 2sin(2rz);

Jump. m(z) = 14 2(x — 0.5)I(z < 0.5) + 0.5I(z > 0.5).

The first case represents a situation in which LIN is a good representation of the true model

“and PSPL may be too complex and overparametrized. The second and the third model define
an increasingly more complicated structure of the relationship between y and z, while the
~last one is a discontinuous function for which both LIN and PSPL are misspecified. More
in detail, n = 200 z values are generated from a Uniform distribution in [0, 1}; v values
are generated at each replicate by adding errors to the signals defined above. Two different
settings are considered: Gaussian errors with mean 0 and standard deviation 0.4 and Cauchy
errors with location parameter 0 and scale parameter 0.05. The first setting is considered as
a situation of “regularly” noisy data with a signal-to-noise ratic of. about 2 for all signals,
but the Exponential function for which it is 011§y a.boﬁt 0.4. The second'o;a-e on the contrary,
defines a situation of more noisy data with the likely presence of extreme and outlying
observations. This prowdts a4 x 2 design of simulations.

For each simulation and each of the B = 1000 replicates, LIN and PSPL parameter
estimates and response estimates at observed P points are calculated at the deciles using
the Huber 2 influence function. In addition, for PSPL a truncated linear bases is used, i.e.
p =1, with K = 39 knots set at = quantiles; the smoothing parameter A has been chosen
via GCV with ¢ = 2; this means that each additional degree of freedom used to approximate
the underlying signal is penalized twice.' It is common to use a value of § between 1 and 3.

For each technique the following quantities are computed at cach quantile to compare

performances:

MCEV. Monte Carlo Expected Value, defined for each ¢ and cach ¢ as

12:?7;1!“13:Z

MASE. Mean Average Squared Errors, deﬁned for each ¢ as

(Rn) IZZ(quxz Mo glza])?;

i=1 r=1
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MADE. Mean Absolute Deviation Error, defined for each ¢ as

(Rn)™8 30 g 2] — my gl

i=1 r=1

Figure 1 shows the MCEV for both LIN and PSPL for all simulations, together with
the true value of the signal for the nine deciles investigated. LIN works well in the linear
case for all quantiles; PSPL, on the 6ther hand, seems to Wdrk well with more complicated
structures and is able to capture even the Cycle signal with a Cauchy error. These ﬁnd'i.ngs
were somehow ‘ex.pected and are supplorted by Table 1 It reports the values of the ratios
of LIN MASEs to the PSPL ones. Large gains in efficiency of PSPL over LIN aze shown for
the more complicated structures as expected. In the Linear case, the performance Of. the two

methods is similar in the Gaussian case, while for Cauchy errors PSPL looses in efficiency. -
[Figure 1 about here.]
[Table 1 about here.]

Figure 2 reports boxplots of the values of MADE taken by PSPL and LIN for the eight
simulations. These plots provide an insight on the variability of the perforfnanc:e of the
technigues over the guantiles considered anf:l, therefore, an overall nieasure of precision.
_PSPL gives the best perfqrmance in all cases but the Linear Cauchy one. This latter behavior
can be explained b3; the fact that the M estimators are not in general rob'dst against ’:ﬁhe effect
of leverage points, as it is the case ﬁvith Cauchy type errors; a nonparametric approximation

of the data may be less robust in these cases than a linear one.
[Figure 2 about here.]

4.2 Bivariate case

In this section simulation studies conducted using two covariates are presented, In particular,
3 and @y take uniformly spread values in the interval [—1, 1] to form a grid of n = 256 points.

Two model surfaces have been considered:

Plane. m(wxy, 22) = 0.5z + 0.22;

12



" Mountain. m(z1, zo) = cos/(1.2mzy)% + (1.2720)2,

- Figure 3 shows the perspective plots of these two modeis. Response values are generated
at each simulation replicate by adding errors to the surfaces introduced. As in the previous
section, two settings are considered: Gaussian errors with mean 0 and standard deviation 1
and Cauchy errors with location parameter 0 and scale parameter 1: Ségﬁal to noise ratios
for the Gaussian settings take values of 0.11 for the Plane surface and 0.26 for the Mountain
one; these represent less good-quality datasets compared $o the univariate case, but it was
important to test them in view of the application in the following section. This becomes
especially true for the Cauchy errors distribution case. A 2 x 2 design of simulations is
therefore set up. For each of the R = 1000 replicates LIN and PSPL parameters and surface
estimates have been computed; in particular, PSPL uses the radial basis menﬁoned in Section
3.1 with K = 50 knots laid down on a regular grid. The performance quantities computed

for the two techniques are the same as those explored for the univariate case.
{Figure 3 about here.]

Plots of MCEV for all cases would be too spé,ce consuming and are not reporte& here,‘
although available from the authors. Here we repoft only those for the Plane and Mountain
with Gaussian errors simulations and a subset of quantiles. Figures 4 and 5 are arranged
with quantiles on rows and, respectively, the true surface, LIN and PSPL MCEVs on éolumﬁs.
Biases. look negligible in all cases except for the LIN approximation of the Mountain surface

as expected.
[Figure 4 about here.]
[Figure 5 about here.]

Table 2 reports MASE ratios for all quantiles and the four simulations. Gains in efficiency
for PSPL are shown as expected for the Mountain response surface. Such galns are more
remarkable for the Gaussian errors distribution. Losses in efficiency are shown for the Plane
surface and central quantiles. In Figure 6 MADE boxplots are reported for all four simulations
and show that PSPL may again be useful and reliable .when an overall precision tool is

required.
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{Table 2 about here.]

[Figure 6 about here.]

5 Application to small area estimation
5.1 The methodoibgy

In rﬁany surveys it is cornmon to compute estimates for portions (small areas, small domains)
of the population of interest such as a mean, a total or a proportion of a variable y. It may
happen that sample sizes for such portions tend to be too small, sometimes non-existent,
to provide reliable direct - deéégn«_based - estimates. Consequently, small afea estimation
t'echniques have been developed to satisfy the need for small area statistics without further
burdening the already constrained budget for the survey. In a model based perspective to
small area estimation, methods baséd on M-quantile regression focus on the quantiles of the
distribution of the study variables (Chambérs & Tzavidis, 2008) . When the functional form
“of the réla,tionship between the gt qua,ntilé and the covariates is not line.ar, a PSPL model may
have sign%ﬁcant advantages compared to the LIN model. In fact, an erroneous sp'eciﬁca,tion
of the M-quantile model can iead to biased esf;imators of the small area parameters.

PSPL is applied to the estimation of a smaﬂl area mean as follows. The first step is to.
estimate tl‘ze M-quantile coefficients .qi for each unit 2 in the probabilistic sample s of size n
without reference to the m small areas of interest. This is done defining a fine grid of values
on the interval (0,1) and using the sample data to fit the PSPL functions at each value g
on this grid. If a data point les exaci:ij on the qth fitted curve, .then the coefficient of the
corresponding sample unit is equal to ¢. Otherwisé, to obtain ¢;, a linear intefiadlation Over
the grid is used. | |

If a hierarchical structure does explain part of the variability in the population ‘data,

' we expect unété within clusters deﬁned by this hierarchy to have similar M-quantile coei-
ﬁéient& Therefbre, an estimate of the mean quantile for area j, §;, is obtained by taking
the corresponding averé,ge value of the sample M-quantile coefficient of each unit in area j,

§; = 3121 ;. In case of out of sample areas, §; can be set to 0.5. The small area estimator
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of the mean §; is then
{Zyw "5'2%;} : (7)
T tesy e
where s; and 7; denote the sampled and non sampled units in area j, respectively, with
Uj = s; Ury, and IN; is the known population size of area j. Note that the unobserved value
for popu%aﬁion unit i € r; is predicted using §y; = wijﬁw((}‘j) + z39,(G;) where BVJ(%) and
: ﬁrw((fj) are the coefficient vectors of the parametric and spline portion, respectively, of the
fitted PSPL function at gy- |
The estimator of the small area mean can be biased for small areas containing outliers.
This has already been noted in Tza,vid.is & Chambers {2006) for the estimator under. the
LIN model. They propose an adjustment for bias based on the Chambers & Dunstan (1§86)
estimator {denoted by a subscript CD) of the small area distribution function. The adjusted
small area distribution function is ‘
Fion 4(t) = —{ > Il < ZZ I({gg+ I~} <8}, @)
€5y I igr; kesy
where {;; and §x; are the predicted values for the populatiozi units in r; and s;, respectively.
The'corresponding. bias-adjusted estimator for the mean is then |

{Z%f “’“Z%J

igsy 'sG'rJ i€s;

5= 94)}- (9

Other quantiles of .the distribution function can be obtained by appropriately integrating
the CD estimator of the distribution function.

Following the approach described in Chandra & Chambers (2005) and Chambers & Tza-
vidis (2006}, for fixed g and .)\, the §; can be written as the following linear combination of
the 6bserved Ui,

Zw”yz, {(10).

. Ny ies
with weights w; = (wy;, .. wm) gwen by
_ N . -1 N — 1
w, =1, wiix 2) ([X Z)'W(5)(X 2]+ AG) (:r AN

iR

with 1;, the n-vector with " component equal to dne whenever the corresponding sample

unit is in area j and to zero otherwise, W({;} a diagonal matrix that contains the final set
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of weights produced by the iteratively reweighted penalized least squares a_lgorithm use;,d to
estimate the regréssion coefficients (see Section 3.3), and with T',, and T's, the totals of the
covariates for the non-sampled and the éampied units in area 4, respectively.

The weights derived from (11) are treated as fixed and a “plug in” estimator of the mean

- squared error of estimator (10)
MBSE(g;) = var(y; — §;) + [bas(@)l* : (12)

can be proposed by using the standard methods for fobust_estimation of the variance of un-
biased weighted linear estimators (Royall & Cumberland, 1978) and by folloﬁring the results
“due to Tzavidis & Chambers {2006). The prediction variance of (10) -can be approximated
by . ‘
A 1 N; —n; <
var(§; = 55) 5 ( 2 {dfy + ~L=5 Joar(us) + Y diver(yy)) (13)
5 iesy J i6o\s;
| with dy; = wj; — 1 if § € s; and dy; = wy; otherwise, and s\s; the set of sampled units out of
area j. The bias can be written as '

bias(f;) ~ _NE_J ( Z Z Wy Bk — Z ﬁm) (14)

k=1 i€sy "':EE‘U_.,'

where iy = mgkﬁw(ﬁk) + 2y (Qy) are the study variable values under the PSPL model.
Followiﬁg the area level residual approach (Tzavidis & Chambers, 2006), we can interpret
var(yy) conditiqnally $o the specific area j from Which Yy, is drawn and hence replace var{y;;)
in {13) by (yy — 9i5)*. An estimate of the bias is obtained replacing #is by fi in (14). A
_robust estimator of the mean squared error of (10) is given by the sum of the estimator of

the variance

.‘ﬁ—... 2 1 N‘ - ¥y o~ ’ ‘ o
DaF{y;) = el Z {dfj -+ nj — ; } (g5 — Bis)* + Z d?j(yij — )" (15)
i J

Jojies; i€s\s;

and the squared estimate of the bias

2 -
RN 1 2 ~ ~ .
8*(8;) = N7 SN wil — D i | (16)
7 =1 d€ sy tel;
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Since the bias-adjusted nonparametric M-quantile estimator 1s an approximately unbiased
estimator of the small area mean, the squared bias term will not impact signiﬁéantly the
mean squared error sstimator. The main lirﬁitation of the MSE estimator is that it does
not aécoun_i; for the variability introduced in es'tiznating.fhe‘ area specific ¢’s and A. Thus
it may underestimate the true MSE. We note also that we can obtain an estimate only for
areas where there are at least fwo sampled units. For all these reasons, we are currently

investigating the use of bootstrap as an alternative approach for estimating the MSE.

5.2 The estimation of Acid Neutralizing Capacity at HUC level
in NE lakes '

Between 1991 and 1996, the Environmental Monitoring and Assessmeént Program (EMAP) of
the U.S. Environmental Protection Agency conducted a survey of lakes in the Northeastern
states of the U.S. The survey is based on a population of 21,026 lakes from which 334 lakes
were surveved, some of which were visiteéd several times duriﬁg the study pericd. The total
number of measurements is 5‘51. ' . h . '
This data set, developed by EMAP, was supplied to us by gpace-Térﬁe Aquatic Resources
Modeling and Analysis Program (S’I‘ARMAP)‘ at Colorado State University. Figure Ta dis-
plays the région of interest and the locations of the sampled lakes. The small areas are defined
?:ay 8-digit Hydrologic Unit Codes (HUC) within the region of interest. Note that 27 of 113
HUCSs are out of sample areas. The target parameter is the meali.Acid Ncutralizing C_apa.ci%y
{ANCQ) for each of 113 small areas. ANC is often IISlGd as an indicator of the acidirﬁcation risk
of water bodies in water resource surveys. Figure 7b shows the distribution Of the observed

ANC values. The distribution is skewed and there are outlying observations.
{Figure 7 about here.]

For this data set Opsomer et al. (2005) suggest that the dependence of ANC from the
geographical position of the lake as represented by the geographical coordinates (UTM coor-
dinate system) of its centroid is more complex than & plane in the space. It can bfe approxi-
mated us;%ng a set of ra(ii_al basis functions in the p;splines context. The method described in

Section 5.1 has been applied to the data using bivariate splines with geographical coordinates .
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o of thé centroid of edch lake as covariates and an extra parametric term for elevation. Un.its
“belonging to the éame HUC hav-'e similar M-quantile coefficients. The mean ANC at HUC
level has been estimated by expression {9). _
Figure 8 shows the map of the design based direct estimates of the average ANC computed
only for the HUCs in the sam_ple (8a) and the estimated means for the sampled and not
sampled HUCs under the PSPL model (8h). 'Compared t0 the map in F%guré 8a, the small
area estimation map in 86 is made robust against outlying data values. This characteristic
can be noted for outlying positive values that lead to higher direct estimates of the mean
ANC with respect.to those obtained by the: PSPL model. The met.hod provides a useful
tool to detect those HUCs in which lakes are at risk of acidification (redﬁ spots, values of
ANC smaller than' aboﬁt 200} accounting for the s_I%ewed distribution of the réspons& This
approach can also’ be usefully applied lto the estimation of many area specific parameters
including the quansiles (og medians and percentiles) of the distribution of ANC in the
different HUCs. ' |

[Figure 8 about here.]

In order to appreciate the results obtained with the introduction of spatia‘} informafcionl,
we computed the estimates of mean ANC also through a LIN mo&el that uses the san?e
covariates. Figure 9 reports the éstimated means for each HUC with the PSPL m;)dei (z-
~ axis) and the LIN one (y-axis). There are clear differences for estimates obtained in out of
sample HUCs: the shrinkage effect of the pr‘ediction" by LIN model is avoided by the use of the
p—splinés‘. It seerms that the spat'}al spline term allows for ifnproving fhe model prédiction's for
these gz:reés by “borrowing strength” from related observed units belonging to neighboring
HUCSs. This behavior is also shown by the results obtained in Opsomer et al. .(2{}05) using

mixed effects models.
[Figure 9 about here ]

Let us now look at the estimated precision of the estimates. The estimator under- the
PSPL model is less variable in each small area than under the LIN one. Table '3 shows

the pefcentage joint distribution of the estimated means (classified as in Figure 9) and
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their estimated Coeflicient of Variation CV = v/mse(§)/#, computed by expressions (15)
and (16) for both the PSPL and the LIN approach (LIN in parentheses). In both cases the
estimates refer ‘ab sampled areas. We can note that the average CV of the estimator under
the PSPL model is lower than in LIN case (44.0% vs 112.7%) and the median value is 24.2%
in the PSPL case, while it is 50.9% in the LIN case.

[Table 3 about here.]

6 Conclusions

In this paper we propose an extension to M-quantile regression: when the functional 'form. of
the rels;ltiozzship betweén the variable of inferest and the covariates is not linear or soiné_ other
pre-specified parametric form. rI“he nonparametric modeling via penalized splines, beyond
having all the properties of M-quantile models, allows for dealing with undefined functional
forms ‘that can be estimated from the daﬁa. To fit thé model we propose an algorithm based
on penalized iteratively reweighted least squares. Asymptotic properties of the pérameter
estimators of the p-spline model are discussed. Relative performances of the nonparametric
- M-quantile regression (PSPL ) are evaluated through Monte Carlo experiments. Results
from the simulation studies indicate that this approach works well and competes with the
conventional M-quantile regression models whésn the undeﬂj’mg structure of the relationship
between the res?dnse'and the covariates is more complicated than linear.

The PSPL can be widely used in ﬁ;any important application areas, such as financial
and economic statistics and environmental and public health mode‘iing. In this work the
PSPL models are used for small area estimation. Also in this case they appear to be an
useful tool when the functional form of the relationship between the variable of interest
and the covariates is left unspecified and the data are characterized by complex patterns of

spatial dependence.
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Figure 1: MCEV for LIN and PSPL together with the true quantile functions for all univariate
simulation studies.
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Figure 2: Boxplots of MADE for LIN and PSPL for all univariate simulation studies.
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Figure 8: {a) Map of design based direct estimates of ANC means for each HUC. (b) Map

of model predicted ANC means for each HUC under PSPL model.
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, 61 02 03 04 05 06 07 08 09
Linear, Gaussian 1.0 10 09 09 08 08 09 09 1.0
Linear, Cauchy 09 07 06 05 06 06 07 09 11
Exponential, Gaugsian 1.3 1.8 25 35 40 34 25 18 1.3
Exponential, Cauchy 2.3 47 68 82 91 99 98 72 30

Cycle, Gaussian 55 104 175 26.1 30.7 26.2 176 10.5 56
Cycle, Cauchy - 50 54 52 50 49 49 . 51 52 47
Jump, Gaussian 1.2 16 19 22 24 22 19 16 1.2
Jump, Cauchy 21 28 30 31 32 33 33 3.2 26

Table 1: MASE values for LIN for each decile and univariate szmuiatlon siaudy, MASE for
PSPL =1 _

6.1 02 03 04 05 06 07 08 09
Plane, Gaussian - 0.9 09 068 07 06 07 08 09 09
Plane, Cauchy 1.0 08 07 07 07 07 08 09 1.0
Mountain, Gaussian 1.3 1.9 25 29 3.1 29 25 19 13
Mountain, Cauchy 1.0 0.9 1.0 1.1 1.1 1.1 10 1.0 1.0

“Table 2: MASE values for LIN for each decile and bivariate simulation study; MASE for
- PSPL = 1.

TV (%) .
ANC | 0-10 10-20 20-30 30-50 >50 - Tot.
264-300 0.0 (0.0) 27 (0.0) 170 (5.4) 123 (11.0) 11.0 (37.0) 43.0 (53.4)
300.1-600 14 (0.0) 151 (13)  41(6.8) 27(82) 0.0 (2.8) 23.3(19.1)
600.1-900 2.7 (0.0) 27(0.0)  41(00)  55(41) 00 (54) 150 (9.5)
900.1-1200 0.0 {0.0) 1.4 (0.0) 1.3(14) 0.0(14)  0.0(0.0) 27 (28)
) ) )
) ) )

1200.1-2874.7 4.1 (0.0) 69 (0.0) 00 (14) 41(69) 0.0 (6.9) 151 (15.2

Tot. 8.2 (0.0) 288 (1.3) 27.4(15.0) 246 (31.6) 11.0(52.1) 100 (100

Table 3: Joint class distribution of the level of ANC and the estimates of the Coefficient

of Variation of small area estimates under the PSPL model (in parentheses those undex the
LiN model).

30





