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Abstract

The aim of this paper is to propose different branch and bound methods
- for solving indefinite quadratic programs. In these methods the quadratic
objective function is decomposed in a d.c. form and the relaxations are
obtained by linearizing the concave part of the decomposition. In this light, -
various decomposition schemes have been considered and studied. The var-
ious branch and bound solution methods have been implemented and com-
pared by means of a deep computational test. ‘

Key words: Quadratic prograthing‘, branch and bound, d.c. decomposi-
tion . .

AMS - 2000 Math. Subj. Class. 90C20, 90C26, 90C31.

JEL - 1999 Class. Syst. C61, C63.

1 cIﬁti‘odu_ction

The aim of this paper is to propose various solution methods for quadratic
indefinite programs and ways they can be solved by means of branch and
bound algorithms based on the partition of the feasible region and the
relaxation of the objective function. These problems (see for example .
{2, 3, 4, 9, 16, 17, 18, 19, 20, 21, 26, 28, 29]) have been approached in
the literature in several ways and in [1, 10, 15, 22, 27} they were solved
with solution algorithms based on convex relaxations obtained by means
of a transformation of the objective function in a d.c. form. In this light,
various d.c. decompositions of the quadratic objective function, different
from the ones proposed in {1, 10, 22, 27], have been studied. ‘

In Section 2 we preliminarily define the considered quadratic problem.
Then, in Section 3, we propose some componentwise relaxations of the ob-
jective function whick allow us to state branch and bound schemes where
the feasible region of the current subproblem is splitted with respect to a
single variable. In Section 4 two more relaxations of the objective function
are considered, thus obtaining branch and bound schemes where the fea-
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sible region of the current subproblem is splitted with respect to a linear
function. Finally, in Section 5, the results of a deep computational test are
provided and discussed.

2 . Statement of the problem

In this pa,p:er we aim £o study a generic quadratic problem having a poly-
hedral feasible region. :

Definition 2.1 We define the following quadratic program:

p. { min f(z) = 1aTAz + Tz
re X CR"

where X is a compact polyhedron, ¢ € %* and A € R™*" is any symmetric

matrix. Notice that X can be given by inequality constraints Bz < b

and/or box constraints | < z < 4 and/or equality constraints Mz = ¢, .

where B € R™" be ®™, [, i€ R®, M € RV, g e RN

If A is positive semidefinite then f is convex and hence problem P can be
solved by means of any of the known algorithms for convex guadratic pro-
grams. The aim of this paper is to describe some branch and bound schemes
for solving problem P when A'is not positive semidefinite and to provide
detailed results of a computational comparison of the scheres themselves.
The idea is to decompose f(z) in a d.c. form, that is to decompose A in
the form A =  — C where @ and C are symmetric positive semidefinite
matrices. In this light, the objective function can be rewritten as:

Flz) = %mTQm Tz — é—xTOx

A relaxation of function f(z) can be obtained by Iinearizing its concave part
~127Cz. These relaxations can then be used in order to propose branch
and bound schemes to determine an optimal solution of the problem.

'

3 Componentwise relaxations
This approach is based on the decomposition of matrix A in the form (1)
A =Q - diag(w) (1)

where () € R™*" is symmetric and positive semidefinite, w € ®", w = 0 and
diag{w) is the positive semidefinite diagonal matrix with diagonal elements

1 Note that in {15, 22] a decomposition of this kind {with w = kf1,..., 1T, k > 0 large
enough) was studied. Another decomposition of this kind; based on diagonal deminance,
has been proposed in [22].
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given by the components of vector w. Such a decomposition allows us to
rewrite function f as follows:

. 1 1
flz) = Ea:TQx 4 cFa — 3 g WL
. ie=1

so that the concave part —3 DI w;z? has separable variables thus allow-
ing a componentwise linearization. In-this light, we can consider branch
and bound schemes where the feasible region of the current subproblem is
splitted with respect to one of the components x; such that w; £ 0.

3.1 Main propertles

Gaven a pair of vectors I,u € R", such that [ < u, we can denote wzth
B(l,w) = {x € ®" : [ <z < u} the box generated by | and u. The concave
part 1 3% wiz? of f(x) can be linearized over B(l, u) as follows:

1 1 1 ;
fB(fB) = §$TQ33 -+ el “é' Z’wm[ﬂ:‘i(h + ’LL;‘) e lzul] == §.’ETQ$ + T -+ g
. o] .
with:
1w : 1
Gy = 5 szitu’z and €= (E?;} where &; = ¢; — 5?1)1,(].2 —I—ui) Vi=1,...,n

g}

Notice that fa(z) is a relaxation of f(z) over the box B(l,u), which allows
to define the relaxed convex subproblem for the branch and bound schemes:

P(lu) ; { e b )

The following result provides an estimation of the error done by solving
the linearized problem instead of the original one. With this aim the next
functions will be used:

Er%g(m,i) = %wi{uimm-)(a:-—li), jel,...,m
Breste) = £(o) - fa(0) = 53 wilu - xz){mmnmzﬁwm
LEa)

Theorem 3.1 Let us consider problems P and Pp(l,u) and let

T = arg mengan{z‘u){f(w)} and y* =arg Xr%navu){fﬁ(x)} .

Then: 0 < f(z*) ~ fa(y*) < Brra(y*)-



‘Proof By means of the given definitions it is:
FE) S end f5(") < fala)
INoticing that fe(z*) < f(z*)} we obtain:
0 < fala”) - f5(y") < F&") ~ faly") Fy") = Ja(y") = Brrs(y’)
so that the result is proved. J : 0

The previous result suggesfs to determine decompositions of the kind
A = Q — diag{w) having components of w as small as possible.

3.2 Branch and bound scheme‘

The followmg branch and bound scheme can then be given. With this aim,
notice that 2n linear programs are prehmmarly needed to determine [ and
@ in the case they are not already given (actually, we just need to compute
I, and @; for the indices i such that w; > 0).

Procedure Solve;(P)
determine a decomposition 4 = Q — diag(w )
determine [ and 4 (if needed);
fix the positive value ¢; UB 1= +o0;
Explore1 (I, @),
z* is an optimal solutlon and UB is its value;
end proc.

The core of the algorithm is the following recursive proceduré “Explore; ()7,
where A; denotes the i-th row of A:

Procedure Explore(l,u)
if XN B(l,u) 50 then
Let T be the optimal solution of PB(l uks
if f(Z) <UB then UB := f{T}; z* =T end if;
if fu(E) <UB and Brrg(T) > ¢ then
let i = arg maxX;eqy,....n} LETTR(T, Ok
define ' t==1, 1" 1=, v’ 1= u, " = u;
let wl o=, I =Ty ‘
if AT+ ¢; > 0 then
Explore; (', v');
Explore (I, u";
else
Explore; (I, u');
Explore; (I, v');
end if;
end if;
end if;
end proc.



The proposed branching scheme follows the so called “rectangular me-
thod” (see for example [29]). In this scheme, problem Pp(l,u) can be solved
by means of any of the known algorithms for convex quadratic programs.
Notice that the visit criterion 4% 4+ ¢; > 0 implies that we firstly solve
the subproblem where the function f(x) restricted to the single variable x;
is locally decreasing. Notice also that condition Errg(Z) > € > 0 implies
that for any index i = argmax;e(1,... n}{ Err (T, j)} it results Errp (F,4) > .
0. This last condition implies that wy; > 0, which means that the only’
variables involved in the branching operations are the ones corresponding to
the nonzero components of w. As a consequence, having zero components in
- vector w could improve the performance of the branch and bound algorithm.

3.3 Dlagonai decomposztlon methods

In this subsection we aim to propose methocis for decomposing matrix Ain
the form 4 = Q~diag(w). In the light of the discussion given in Subsection
3.1, we also aim to determine vectors w having nonnegative components
as small as possible. In order to manage numerical errors, we also aim
to have integer components for w. We propose the following procedure
DiagDecomp{A,v), which takes as inputs a symmetric matrix 4 € ®**" and
a vector v € R, The outputs are a nonnegative vector w € RN™ and &
corresponding matrix ¢ which results to be positive semidefinite.

Procedure DiagDecomp(inputs: A, v; oulputs: @, w)
if A is positive sernidefinite
then @ = A and w:=0
else
let mask be the vector such that

v f 1 if rowlAr] #0
mask(r)——{ 0 if row|d,r]=10

v(r) := 0 for all r such that mask(r) 0;
T = A+ diag(v);
let A be the submatrix of T made by its nonzerc rows and columns;
let & € R be the smallest eigenvalue of A
let w be the vector such that w(r) := maz{0, [v(r) — &* mask(r)]};
Q = A+ diag(w);

end if;

end proc.

To verify the positive semidefiniteness of (@, let
Aw = w — (v — & mask)>0,
so that:

@=A+ di.ag(w) = (A-+ didg(v — & - mask)) + diag{Aw}.



By means of a known result on the perturbation of symietric matrices
(®), condition Aw>0 implies that the smallest eigenvalue of ¢} is greater
than or equal to the smallest eigenvalue of (A + diag(v — & - mask)). Asa.
consequence, since (A + diag(v — & mask)) is positive semidefinite (for the
way & is found) then @ is positive semidefinite too.

Different decomposition can be obtained by starting from different vec-
tors v. In our study we have considered the following vectors v:

vt =0

- 'u2 = —-dmg(A)
v® = (1f) € R™ where v = (3 if ag > 0, while 09 = —a;; if ay; < 0;
o = (v) € R where v} = —as + 351 jus |%|

Vector v* represents the most trivial chance. Since a semidefinite matrix has -
nonnegative diagonal eiements also vectors v? (which vanishes the diagonal -
elements of the matrix} and »* (which vanishes just the negative diagonal
‘elements of the matrix) can be proposed. On the other hand, vector v¥is
based on diagonal dommance propertles Notice that, given an indefinite
matrzx A, vectors v', v* and v® provide a nonpositive eigenvalue a while
vt provuies a nonnegative eigenvalue & Two more vectors v® and v® can be
obtained by applying the same approach of vectors 12 and v? to the matrix
A = —Vdiag(A.)V7T, where A = Vdiag(A)V7T is the canonical form of 4
" and AL is the vector obtained from A by vanishing the positive elements.

Example 3.1 Let us consider the following square symmetric matrix:

2 3

8 4 T =7
9 -4 -1. 5 -5 8
3 «1 .4 6 —4 -1
A=1 4 5 6§ 0o 8 -6
7T -5 —4 8 6 =2
7 8 ~1 -6 -2 —4

and let us decompose it i)y means of procedure DiagDecomp(A,v). The
output vectors w', ¢ = .,6, obtained from the previously described
input vectors v*, ¢ =1,..., 6, are the foliowmgs

wh = [20,20,20,20,20,20]7 |, w?=[11,23,15,19, 13,237
w = [18,22,18,18,18,22)T , w®=[11,21,7,25,16,24/"
w® = [15,21,16,19,17,22]7 , w®=19,25,10,22,15,22)7

A computational experience made in testing procedure DiagDecomp(4,v}
shows that vectors v and v® seem to produce output vectors w with a
smaller mean of the components (thus reducing the value of Errg(z)). For
this very reason we decided to use 1n the computational i;est of the branch
and bound algorithm just vectors v! (the trivial one), v* and v®. Let us

et B, P, M c RX® be symmetric matrices such that B = M 4+ P. Let also §: >
By 2 ... > By be the eigenvalues of B, g3 2 ug > ... 2 jin be the eigenvalues of M
. _>_ 'y 2 ... > Ty be the eigenvalues afP. Then, itismn < B~ ST Ve=1,...



note that none of the vectors w*, ¢ '= 1,...,86, is deminated by the others
in the sense of Bomze [6].

4 General linear relaxations

"This approach is based on the decomposition of matrix A in the form:
' v_(A)

4=Q- 3 ddl @
where Q € R™*" is symmetric and positive semidefinite, d1, ... ,d,,w{g) e R
are linearly independent, and v_(A) is the number of negative eigenvalues’
of A. Such a decomposition allows us to rewrite function f as follows:

1 v {A)
i T, * T, 32
f(m)—zas Qr+cw ?é(d z)”

so that the concave part — Z:,Z;EA) (df x) ‘can be linearized with respect to

the functions df z, i = 1,...,.(A). In this light, we can consider branch
and bound schemes where the feasible region of the current subproblem is
splitted with respect 1o one of the functions dfz.

4.1 Main properties
Giiven a pair-of vectors a, § € R¥-{4) such that o < B, we can denote with
Dio,fy=f{zeR": oy <dfz < B;, i=1,...,u_(A)} the set generated

by o and 3. The concave part -3 5 (4 (dTx)? of f(z) can be linearized
over D(a, ) as follows:

v (A)

: 1 1 |
folz) = —mTQac -5 Z Al ol + B:) — i) +Fz = §$TQ:1:-I—E~T2:+60
=1 ’
with: C
v {A) _ R
cwc———Zdtaz%ﬁz) and Cﬁmizaiﬁi

i=1
Notice that fp(z)isa relaxatxon of f(z) over the set D{a, §), which allows
- to define the relaxed convex subproblem for the branch and bound schemes:

Pple, B) : { jieni?r(i%(a,ﬁ}

The following result: can be proved analogously to Theorem 3.1, where:

Errp(z,i) = .é(ﬁi_" dFz)(dTx — alz-) , i=1,...,v_{4)

. v (A) ' v {A}
Errp(z) = flz)— fplz}= % Z (3 — d}“ ) dTa: - ay) Z Errp(z,i)
i1



Theorem 4.1 Let us consider problems P and Pp(l, u} and let

z margweXrgéﬁa;ﬁ}{f(m}} ond y*=arg min {fp(=)}-

Then: 0 < f(z*) — fo(y*) < Brrp(y™).

4.2 Branch and bound s‘cheme

First notice that 2v_{A) linear programs are needed to determine the fol-
lowing values for i = 1,...,v_ (4}

f; = min{d? B; = T
| &y = fél%{d“ z} and G gréa%{dz x}
The following branch and bound scheme can then be given.

Procedure Solvez{P)
determine a decomposition A = Q — 342 4,47
determine & and B; ' .
fix the positive value ¢; UB := +00;
Exploreg(a 8);
z* is an optimal solution and U B is its value;
end proc.

The core of the algorithm is the following recursive procedure “Explores()”.

Procedure Explorez(a, 5)
if XN D(e,B)+# 0 then :
~ Let  be the optimal solution of Pp{a, 8);
if f(T) < UB then UB = f(T); z* =% end if;
if fp(%) <UB and Errp(E) > ¢ then
let ¢ = argmaxje(s,....v. (3 LETTD(T, ) b
define o =, &’ =, § =03, 7= 5;
let B = dl %, of 1= d¥'E; ‘
if dF AT+ dfe > 0 then
Explores{a’, 87;
Explorex{a’, 57);
else
Explores (¢, B”);
Explorez(a’, 8');
end if; .
end if; .
end if;
end proc.

Problem Pp{c,§) can be solved by any of the known algorithms for
convex quadratic programs. Notice that the visit criferion di A% + dfe>
0 implies that we firstly solve the subproblem where the function f (z)
restricted along the direction d; is locally decreasing. Notice also that
condition Errp(Z} > € > 0 implies that for any index i such that i =
arg maxjeq1,..ny L ETTD(T, 5)} it results Errp(E,1) > 0.



4.3 Decomposition methods

In this subsection we aim to propose methods for decomposing matrix- Ain
the form A = Q-2 dydT . Two different methods will be proposed; the
first one is the so called “Lagrange s decomposition method”, while the sec-
ond one uses the canocnical form of symmetric matrices. The decomposition
method of Lagrange (sée [13]), based on the “Law of Inertia” (*), provides for

any symmetric matrix A a decomposition of the kind 4 = @ — ZV“{A did?,
where () is positive semidefinite with ds,...,d,_(a) linearly mdependent
Such a decomposition is described in procedure DecompLagrange(A) where
row|Tr] denotes the r-th row of matrix T (see also [8]).

Procedure DecompLagrange(inputs: A; outputs: Q, k ds, ..., dg)
Ti=A; D:=0; k=0; -
while T5£ 0 do
i T, =0Vie{l,...,n}
then select r € {1,...,n} such that row[T, 1}75 0 and set Tfr,r}=
else select r € {1,... n} such that r = arg maxp(.jxo{llr, 7 ]},
- end if; :
'w‘row[T {] i=1/T[r,t];

Mi=-avv?; Tr=T4M;
if <0 then o=k 1; dp v/ on; Di=D+M end if;
- end doy
Q=A+D; 4
end proc. '

The following procedure DecompEigen(A} is based on the very well
known properties of eigenvalues and eigenvectors of symmetric matrices:

Example 4.1 'Applying the previous procedures to matrix A of Example
3.1 (having two negative eigenvalues) we obtain the next vectors dy and dy:

dy = [0, —2.7484, 0, 3.7902, ~3.9232, 2. 0059]
dp = [0,2.4352,0,0,0, 2. 8724]T

dy = [-0.9277,2.5077, 0.8855, —2.0231, 13550, —2. 3097]T
dy = [—0.3627,0.3596, —1.0896, 1.0410, —0.9956, —1. 392017

Decomplagrange {

DecompFigen : {

#(The Law of Inertia for symmetric matrices {13]) Let A € R**%, A # 0, be a
symmetric matrix and let ui,...,ur € 87\ {0} be 1 € » < n linearly independent
vectors such that:

A= Zaiuiuf, where o € {-1,1} ¥i=1,...,r
ges}

Then the number of positive and the number of negative coefficients ¢y are independent
of the chosen set of linearly independent vectors uy,..., %,



Procedure DecompEigen(inputs: A; outputs: Q, k, dy, ..., di)
D:=0; k:=0; determine the eigenvalues A¢, ¢ =1,...,n, of A and the corre-
sponding eigenvectors vy, ¢ = 1,..., 0
for i from 1 to n do '

if A; < O then

b=k 1 dy == vV A M = — AUy T D —-D+M

end if;
end do;
Q=A+D;
end proc.

: 5 Computational results

The previously described branch and bound methods and decomposmlon
procedures have been fully implemented with the software MatLab 7.2
R2006a on a computer having 2 Gb RAM and two Xeon dual core pro-
* cessors at 2.66 Gz, In the computational tests we considered 3 diago-
nal decompositions, namely Dlagl D1ag4 and Diag6, obtained by using in
Diagbecomp(A,v) vectors v}, v* and v®, respectively (see Subsection 3. 3).
- We also considered both DecompLagrange{A) and DecompEigen(A) proce-
dures. The cases of box feasible region and nonbox ones have been consid-
-ered separately. The problems have been randomly created; in particular,
raatrices and vectors A, ¢, B, b, I, 1, have been generated with components
in the interval [-10,10} by using the “rand()” MatLab function (rnumbers gen-
erated with uniform distribution). We assumed also epsilon=0.1. Within
the branch and bound procedures, the linear and convex quadratic problems
have been solved with the “linprog()” and “quadprog()” MatLab functions.
For each class of problems (dimension and type of region) 1500 randomly
generated problems have been solved by means of the considered algorithms.
The average number of iterations spent by the branch and bound methods
to solve the problems is given as the result of the single test and as an index

of the performance of the used éecompos;tmn .

5.1 Role of negative eigenvalues

In order to verify the impact of the numbers of negative eigenvalues of
A in the performance of the considered methods, we solved problems of
dimenston-n = & having a number of negative eigenvalues of matrix A4
from 1 to 8 (num = 1,...,8). The computational results regarding dense
matrices A are provic’ied in Table 1 and Table 2.

Taking into account that we considered just problems having dimension
n = 8, we can observe that for matrices having 2 small number of negative
eigenvalues the linear decomposition methods appears to have better perfor-
mances than the diagonal ones. This behaviour reverses for matrices having
a big number of negative eigenvalues. Such a kind of results can be justified
recalling that in the linear decomposition methods we deal with a number of

10



num || Diagl | Diagd | Diagh | Lagrange | Eigen |
1 197.96 | 24.437 | 89.551 7.5514 6.9653
2 170.75 | 39.091 | 68.068 22.496 " | 22.203
3 80.092 | 27.953 | 36.052 47.863 54,368
4 41.039 | 10.481 | 19.968 91.147 108.39
5 19.237 | 12014 | 11217 192.8% 186.8
] 12.173 8.541 8.1047 270.3 321.63
7 9,456 7.0853 | 6.9827 270.76 628.95
8 B8.4787 6.584 6.584 175.91 1111.4

Table 1: Average Iterations - Box Region .’

[-num || Diagl | Diagd | Diagf | Lagrange | Eigen
430.79 | 40.923 | 204.12 8.86 6.356
567.15 | 148.01 { 278.05 38.121 20.979
413.39 | 186,95 | 231.66 { = 86.509 50,737
238.78 | 150.48 | 152.16 178.61 106.38
154.81 | 116.03.7 11112 353.68 201.59
114.28 .| 88,684 | 85.897 516.27 383.69
89.769 | 70.451 | 69.323 568.54 778.02 K
78.454 | 64.765 | 64.765 H72.85 1439.2

GO =3 Oy U1 WD

Table 2: Average Iterations - Non Box Region

vectors d; equal to the number of negative eigenvalues. Notice also that for
matrices having 3 big number of negative eigenvalues Decomplagrange(A4)
has a better performance than DecompEigen(A).

5.2 Performance for dense matrices

In the previous subsection we saw that the number of negative eigenvalues
affects the performances of the various methods. For this reason, we carried
on three computational experiences were we considered dense matrices A
having the 25%, 50%, 75% of negative eigenvalues, respectively. Both box

{"n ] Diagl | Diagd | Diagé | Lagrange | Eigen
7 89.962 | 22.047 | 38.785 17.276 20.625
8 170.75 | .39.091 [ 68.068 22.496 22.293
9 347.19 | 65.517 123.1 24.915 24 564
10 300.76 | 80.323 | 189.79 T5.783 66.807
11 471.3% | 130.88 | 172.61 97.603 71129
12 || 885.76 | 201.96 § 300.92 &+ 115.02 76.049
13 1426.2 | 315.68 | 495.2 139.35 79.366

14 - 365.9 | 459.47 - | 2331
15 - 608.88 | 749.37 - 222.62.
16 - 804.68 | 12499 - 233.28

Table 3: Average Iterations - Box Region - 25% eigenvalues

11



Diagl | Diagd | Diagb | Lagrange | Eigen |
7 304.41 | 92,775 | 162.57 27.942 18.71
8 567.18 | 148.01 | 278.05 33.121 20.97%
9 1132.6 | 251.05 | 516.11 37.11 22.465
10 1428.4 | 552.74 | T37.99 128.57 60.836
il 2358.1 | 786.84 | 1iBT.T 148.39 | 63.49
12 11 32636 | 10718 1605 169.84 67.13
13 4367.5 | 1274.5 2046 1798 66.09

=3

14 - 2581.6 | 33314 - . 176.35
15 - 3242.1 | 41525 - 175.28
16 - 3673.6 | 5168.2 - | 178.2%

Table 4: Average [terations - Non Box Region - 25% eigenvalues

3

n || Diegl | Diagd | Diagh | Lagrange | Eigen
5 23.326 1 8.0727 | 10.091 12,043 20.801
6 26,167 1 11.913 | 13.825 23.298 38.63
7 35.012 | 15.517 | 16.852 43.38 63.244
8 47.125 | 21.54 22,668 88.667 108.58
9 57.665 | 27.063 | 26.841 164.30 177.63
10 i 67.833 | 33.052 | 32.695 342.51 303.44
11§ 84.577 | 41.065 | 38.001 620.71 493.07
12
13
14
15
16

94.166 | 47.728 | 43.173 1093.7 798.89
105.6 | 55.263 | 49.219 1920.4 12561.1
- 70.56 | 61.062 - 2068.5

- 88.262 | 7042 - 3639
- 97.498 | 7803 - 4843.3

Table 5: Average Iterations - Box Region - 50% eigenvalues

I Diagl | Diég4 [ Diagh | Lagrange | Figen
61.95 | 30.985 | 37.331 |- 20.88 20.872

n

5

& 100.36 | 54.472 | 60.607 39.916 37.843
7 162.59 | 96.832 | 103.83 75.367 62.353
8

g

305,77 | 181.41 | 189.38 168.62 108.03
543.67 | 340.41 | 33L.77 324.44 178.62
10 §| 717.15 | 433.56 | 430.98 579.59 205.29
11 || 1074.6 | 7058 | 682.29 1099.4 | 473.33
12 |} 14716 | 1011.8 | 9304 1867.5 762.74
13 1969 1356.5 | 1238.4 3222.3 1238.3

14 - 1870.8 | 1725.1 - 1949
i5 - 2587.4 | 2337.8 - 2053.5

16 - 2062.1 | 2625.4 - 4498.6

Table 6: Average Iterations - Non Box Region - 50% eigenvalues

12



Diagl - | Diagd | Diagf | Lagrange | Eigen
11.918 | 7.7819 i 7.5083 116.57 139.2
12,173 8.541 8.1047 270.3 321.03
13.444 9.608 9.2467 611.27 763.81
14.376 | 10.726 | 10.212 1301.2 18324
19.926 | 14.369 | 13.373 2511.8 22105
12 20.335 | 15.144 | 14.193 4626.6 5070.6

— .
oD oo s

Table 7: Average Tterations - Box Region - 75% eigenvalues

[Ta || Disgl | Diegd | Diag | Lagrange | Eigen |
7 || 80,256 | 61.307 | bG.684 | 296.81 | 160.93
8 || 114.28 | 88.684 | 85.897 | 516.27 | 383.69
9 || 17389 | 138.99 | 137.16 1080 916.11
10 || 265.66 | 197.06 | 1856.19 2345 2282.6
11 || 43005 | 344.67 | 330.01 | 38Y5.8 | 25128
12 |} 52198 | 396.98 | 383.05 | 6506.2 | 5785.1

Table 8 Average Iterations - Non Box Region - 756% etgenvalues

regions and non box regions have been considered. The results are given in
Table 3 and Table 4 as regards to matrices A having the 25% of negative
eigenvalues. In Table 5 and Table 6 we provides the results related to
matrices 4 having the 50% of negative eigenvalues, while Table 7 and Table
8 summarizes the results given by matrices 4 having the 75% of negative

elgenvalues.

The obtained computational results show the following behaviours of the
considered methods:

in the case of 25% of negative eigenvalues, the linear decomposition
methods have better performances than the diagonal ones, for both
box regions and non box ones;

for matrices A having 50% of negative eigenvalues, the diagonal de-
composition méthods have better performances than the linear ones
for any dimension in the case of box regions, for n > 13 in the case of
non box ones;

in the case of 75% of negative eigenvalues, the diagonal decomposition
methods have better performances than the linear ones, for both box
regions and non box ones;

among the diagonal decomposition méthods, the performance of pro-
cedure DiagDecomp{A,u?) is worst than DiagDecomp(A,u*} and than
Diagbecomp{A®) ones;

among the linear decomposition methods, the performance of proce- -
dure DecompLagrange(A} is worst than DecompEigen(A) one; just in
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the case of box regions and small dimensions n the performances of
the two methods are comparable;

» the performance of procedure DecompEigen(A) is comparable for box
regions and non box ones; the other methods have the best petfor- .
mance in the box case.

These results confirm that in the case of matrices 4 having a small num-
ber of negative eigenvalues the linear decomposition methods (in particular,
DecompEigen({A) procedure) have better performances than the diagonal
ones. The situation reverses when the number of negative eigenvalues in-
creases (in particular, DiagDecomp(A,v?!) and Diaghecomp(4,v%) procedures
provide the best performances}.

5.3 Performance for sparse matrices .

In Table 9 and Table 10 we now provide some resuits concerning sparse
matrices 4 (at least 66% of zero elements).

Diagd | Diagh | Lagrange | Eigen |

[ n [ Diagl
T 33.572
8 45,628
9 T0.964
10 || 87.14
11 117.55
12 155.91
i3 186.6
i4 -
15 -
16 -

8.5868 | 11.168 321 | 29.528

11.62 | 14.685 79.121 58.833
15,189 | 18.881 127.27 106.48
17.836 | 21.82 233.84 176.07
22.857 | 27.499 494.46 317.01
20.862 | 36.064 900.58 544.18
34.132 | 38.693 1328.2 867.11

44,071 | 46.205 - 1537.3
51.322 | 52389 | - 2359.6
61.675 1 72.880 - 3653.8

' Table 9: Average Iterations ~ Box Region - Sparse Matrix A

Diagd | Diagh | Lagrange | Eigen

52.031 | 65.806 62444 35,508
87.458 | 109.55 128.01 63.408
144.24 | 175.99 268.74 111.95
239.17 | 2821 481.20 195.8
352.04 § 420,19 934.05 334.63
521.95 | 597.47 1549 553.18
748.66 | 848.13 2364.3 899.82

1278.8 | 1305.7 - 1587
1768.3 | 1900.8 - 2414.9
2199 2350 - 3753.9

i n || Diagl
7 146.29
8 239,29
9 383.33
10 676.52
il 1033.1
12 1503.4
13 2152.6

4 -
15 -
16 -

Table 10: Average Iterations - Non Box Region - Sparse Matrix 4

The behaviour of the considered methods is similar to the case of dense
matrices with 50% of negative eigenvalues, with a reduction (for all the
metheds) of the number of iterations.
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5.4 Performance for hlgher dlmensmns problems

" To complete the overall compu’ratlonai test we solved some problems with
dimension from n = 20, by using the methods which resulted to have the
best performance. The obtained results are given in Table 11. Both box
~ regions and non box regions have been considered, as well as matrices A
" having 25%, 50% and 75% of negative eigenvalues. For each category 100
random problems have been solved.

25% - Eigen - 50% ~ Diagh - 5% - Diagh
n Box | Non Box Box | Non Box Box | Non Box
20 674.56 583.58 178.94 5460 35.76 3709.6
25 1900.8 1422.2 337.6 || 6635 52.9 7021.9
30 9738.3..1 8082.3 401.48 | 7208 1i1.44 T049.7
35 14926 15262 1282.2 11694 133 84 9113
40 - - Lo 2394.3 - 286 v
45 - - 3016 - 742 -
50 - - 5448.1 - 1108.1 -
55 - - 6154.2 - 1456
60 - - 6345.9 - 2182.4

65 1 - - 1 8053 |~ 3967.4 -

Table 11: Average Tteratioris - Dense Matrix A

It is worth noticing that the number of iterations needed by the used
methods to solve problems with non box region quickly augments when the
dimension of the problems increases. This does not happen when problems
with box region and a matrix ‘A with at least 50% of negative eigenvalues
are solved by procedure DiagDecomp(4,v%).

6 Conclusmns |

In this paper we propose various methods to solve indefinite quadratlc pro-
grams with polyhedral region. In the studied methods no variable trans-
formations are needed, so that peculiarities of the feasible region are main-
tained. In particular, the performances of the various methods have been
" analyzed separately for problems having box region and for problems having
non box one. Procedure DecompEigen(A) provides a similar computational
behaviour for box regions and for non box ones; all the other methods show
worst performances for the non box regions case. i

The performances of the methods change with respect to the number
of negative eigenvalues of the quadratic form of the objective function. In
particular, for few negative eigenvalues procedure DecompEigen(A) seems
to have the best performance, even if the number of iterations needed to
solve the problems increases quickly with the dimension of the problems
themselves. In the case of at least 50% of negative eigenvalues, the best
performance is given by the DiagDecomp{4,v) procedures which also result
to be stable in the case of box regions.
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Finally, notice that in [10] a solution method has been proposed for box
quadratic problems. Such a method is based on a variables transformation
performed by means of the eigenvectors of matrix A. It is worth notic-
ing that procedure DecompEigen(A) provides the same iterations than the
method proposed in [10], without the need of any variables transformations.
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