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Multiobjective Problems with Set Constraints:

from Necessary Optimality Conditions
" to Duality Results

Riccardo Cambinit

Abstract

In this paper multiobjective problems having equality, inequality and set con-
straints are studied. Necessary optimality conditions are stated in both the image
space and in the decision space. Then, mixed duality results are proved under
suitable generalized concavity assumptions.

Keywords Vector Optimization, Optimality Conditions, Image Space, Maximurm
Principle Conditions. '
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1 Introduction

The aim of this paper is to study optimality conditions for vector valued problems
having three kinds of constraints: inequality constraints, equality constraints, and a set
constraint (which covers the constraints that cannot be expressed by means of either
equalities or inequalities). The partial ordering in the image of the objective function is -
given by a closed convex pointed cone C with nonempty interior (that is a solid cone, not
necessarily the Paretian one), while the inequality constraints are expressed by means of
a partial ordering given by a closed convex pointed cone V' with nonempty interior.

- Problems of this kind have been widely studied in the literature obtaining necessary
optimality conditions in the decision space, that is conditions involving derivatives and
multipliers. These conditions have been called “maximum/minimum principle”. condi-
tions or “generalized Lagrange multiplier rules” and have been stated for differentiable
scalar problerns (see for example [44, 49, 6, 35]} and for multiobjective paretian ones (see
for example [46]). Recall also that these problems are used also in infinite dimensional
spaces, for instance in optimal control theory (see for all [29, 41, 50, 55}).

Recently, this problem has been studied by the author with the aim to generalize
the results known in the literature to multiobjective nondifferentiable problems (see
[20, 21, 22, 23, 24]). The study has been carried on by means of the so called image
space approach, first suggested in [43] and already used in [12, 13, 14, 15, 16, 19, 17].

Very recently, such a kind of problems have been studied in [25] stating duality results
which generalize the ones proposed in 12, 52, 54, 63]. Notice that in the literature several
classes of generalized concave functions have been used to study duality results (just
- recall the concepts of invexity, generalized invexity [1, 10, 11, 37, 42, 47, 57], p-concavity
[32, 45, 61], F-concavity [39] and, more recently, (F, p)-concavity [2, 8, 9, 52, 54, 56, 63]).

iDept. of Statistics and Applied Mathematics, Faculty of Economics, University of
Pisa, Via Cosimo Ridolfi 10, 56124 Pisa, ITALY. E-mail: cambric@ec.unipi.it



In this paper some necessary optimality results are first provided in the image space
and in the decision space. Then some mixed type duality results are given. With this
aim and for the sake of simplicity, some classical generalized concavity concepts have
been used (see [25] for results concerning more general concavity properties).

In Section 2 the primary problem is defined and the main notations are introduced.
In Section 3 some general necessary optimality condition in the image space are proved,
while in Section 4 the necessary optimality conditions are stated in the decision space. In
particular, the maximum principle type conditions are characterized in the image space
allowing us to realize the necessity of studying some regularity conditions. The results are
stated assuming the functions to be Hadamard differentiable or Fréchet differentiable.
In Section 5 it is shown that assuming suitable generalized concavity properties the
maximum principle type necessary optimality conditions become sufficient. In Section 6
mixed type duality results (covering as particular cases both Mond-Weir dual and Wolfe
dual) are stated. For the sake of completeness, an Appendix providing some classical
results regarding to differentiability, conical approximations, Lyusternik theorem, and
generalized concavity, is given.

2 Preliminary definitions

The aim of this paper is to study optimality results for vector optimization problems.
having both inequality and equality constraints as well as a set constraint (which covers

the constraints which cannot be expressed by means of neither equalities nor inequalities).

In particular, we will consider the following class of problems:

C_max f(x) ‘
g{x) €V inequality constraints
P . L
h{z) =0  equality constraints
re X set constraint -

where A C R* isanopen set, f: A —R*, g: A— R™ and h: A — RP are Hadamard

differentiable vector valued functions with s > land m,p > 0, C C R and V C R™

are closed convex pointed cones with nonempty interior (that is to say convex pointed

solid cones), the set X C A is not required to be convex, closed or open. In other words,

problem P has inequality constraints, equality ones and a set constraint which covers

those constraints that cannot be expressed by means of either equalities or inequalities.
For the sake of convenience, P can be also expressed as

C_max f{z)
P: glz) eV or P: { C’_maéxsf(:c)
e XNH rEer

where]ff={:céA:h(9:)=0} and Sp={z € A: g(z) € V,h(z) = 0,2 € X}.

As usual, a feasible point zp € X is said to be a local efficient point if there exists a
suitable neighbourhood I, of xy such that:

Ay € I, N Sp such that f(y) € f(zo) +C, fly) # f(zo)
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For the definition and the properties of Hadamard differentiable functions [31, 3, 4,
51, 60] see Subsection 7. 1 in the appendix.

A key tool in studying optimality conditions in the 1mage space is the so called
Bouligand Tangent cone to X at zo € CU{X), denoted with T'(X,z), as well as the
cone of feasible directions to X at zy , denoted with F(X,zo), and the cone of interior
directions to X at xo, denoted with J(X, zo) {see for example [6, 33, 34]). The definitions
and the properties of these conical approximations are summarized in Subsection 7.2 of

. the appendix . |
Note finally that, for any set B C R”, the following notations will be used:

e BY is the set R\ B,
Cl{B) is the closure of B,

Int(B) is the interior of B,
Co(B) is the convex hull of B,

B is the positive polar cone of B,

cone(B, xq) is the cone génerated by B — {zo}:
cone(B,zo) = {y € R" 1y = Az — z0), )\ >0,z € B}. |

3 Nécess_ary optimality condition in the image space

The equality constraints play an important role in the study of optimality conditions.
* For this reason, a key tool is the so called linearizing cone of H at xy, denoted with
L{H, z¢). For its definition and properties see Subsection 7.8 in the appendix.

The following further cones will be helpful in the rest of this section:

L(H,50) = %*%\L‘(H,'a:e)={ve%“\{0} (xo)%o}
CT(X,H,z) =7 = T(X 0 H,ze) UL(H, z0)°

For ahy cone U C R" also the following sets are worth to be defined:

D(U,zy) = {tGg%m%—s#’;t:(_g_i( )’5‘ ($0)+g(m0) h( )),’U#G,UGU}
K(U,z) = D(U,x0)~(0><v><0) .

Obviously, it is D(U,zo) C K(U,zp). Notice also that these sets are cones, since the
Hadamard directional differentisbility of f, ¢ and h implies that —-‘f(mo) g%(mo) and
gﬁ(mg) are positively homogeneous (of the first degree) as functions of the direction v.

The following necessary optimality condition in the image space can now be proved.

Theorem 3.1 Consider problem P. If the feasible point xy € Sp is a local efficient
point then the following condition holds:

K{(T,z0) N (Int(C) x Int(V) x 0) = 0 (3.1)
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Proof As a preliminary result notice that since the cones C and V are solid, convex and
pointed then (3,1) is equivalent to:

D(T, %) N (Int(C) x Int(V) x 0) =0 (3.2)

so that just (3.2) has to be proved. With this aim, supposé by contradiction that
Jv e T(X, H,zy), v # 0, such that

¢ = (L tan) G te0) + stao) Gtan)) € (Unt(C) x Int(V) x0).

Since Z(zo) = O then v ¢ L(H, )¢ so that v € T(X N H,zy). By means of the
definition of T(X N H, zo) it yields that I{z,} C (X NH), zx — 2o, H{ M} C R, X > 0,
A — 00, such that v = limg_, 400 U Where vy = Ap(zr — Zo). Since functions f and g
are Hadamard directionally differentiable it results: '

m f@e) — flzo) _ lim F@o+ x-ve) — flzo) _ Bf

koo = k-mwnoo I = ”é”’"”?j(-mo) E_I nt(C’ )
and, in the same way: . ‘
g S@) ) 9GS~
k=00 T koo L
= ‘%(xo) € —g(xo) +Int(V)

By means of a well known limit theorem it then exists & > 0 such that X > 1,
Aelf(zi) — fx0)) € Int(C) and M\ (g(zs) — g{z0)) +g(20) € Int(V) for any k > k. Since
A > 01t follows that f(zx) € f(20)+Int(C) and g(z) € g(wo)(1—5) +Int(V) Vk > k.
Since g(zg) € V and (1 — —) > 0 it follows: that g(zq)(1 — w—) € V as a consequence
9(zx) € Int(V) since V is a convex pointed solid cone. The sequence {z4} C (X N H),
Z — o, then results to be feasible for k > k with f{z) € f(zo) + Int(C); this means
that zo is not a local efficient point, which is a contradiction. . O

The following example points out that the cone K(7,z,) might be nonconvex.

Example 3.1 Consider the following problem: . ‘
P {max f(z1,2s) = 71, 9(z1,20) = 22 > 0,z € X}
where X = X; U Xy U X3 with:

Xy = {(:m,:rg 63%2:931+x220,23;1w§~3;2§0}’
X = {(z,22) € R xy < 0,20 <01,
Xy = {(z1,z2) € R : @y + 32 > 0,01 + 235 < 0}

et

andlmg = (0,0); since the problem has no equality constraints it is S = R? and
T(X,H,z0) = T(X,z) = X. Notice also that (Int(C) x Int(V)) = R, and that
X = D(T, ) since [J¢(zq), Jo(zo)] is equal to the identity matrix. It results:

K{(T o) = {(z1,%2) € R% : 221 + 2 < 0 or 31 + 229 < 0}




S0 thaﬁ K(T ‘9:0) N (Int(C} x Int(V)) =

is verified. Nevertheiess, the sets X, T(X, %) T (X H, xg) D(T :1:0) and K (7, o) are
not convex.

4 Necessary eptlmallty cendltlon in the decision space

,..

Problem P has been already studied in th@htemture in the particular case of a scalar
objective function and assuming the dlffereﬁhabﬂlty of functions f, g and h (see for all
6, 44, 49}). Under such assumptions some. necessary optimality conditions (known as
“maximum/minimum principle” conch’slons) have! been stated in the decision space.
 The aim of this section is to generalize those condztzons for multiobjective problems
with Hadamard directionally dﬁerentiabie funcj:aons It will be shown also that the
condition previously stated in the image Space (Theorem 3.1) is more general than the

ones which W111 be stated in the decision sphf' e.
R

4.1 Characterization in the i 1mage space of maximum principle
conditions

The study of this section is based on the following fundamental preliminary result, which -
provides a characterization in the image space of the generalized maximum principle
conditions given in the decision space. With this aim, the following further notation is
introduced: ' ‘

Iy (U) _ {Ou{te R t= g—Z(:{:g),v%O,v e U}

Theorem'ci.l Consider problem P and let U € R™ be a cone. Then, af least one of the-
following conditions holds:

i) p =1 and Co(Iman(U)) # K7,
i) Co(D(U,zq)) N (Int(C) x Int(V) x 0) = §,
if and only if Hay, oy, on) € (CT x VT x ), (ay, 0y, ) # 0, such that:

oTg(zo) =0 and ai’%(xa) + aTgE(mo) +al gh (25) <0 Yo € CUU)\ {0}
Proof =) Suppose condition i) holds. Since Co(Imgn(U)) # RP there exists a support
hyperpla,ne for the convex cone Co(Imgp{U)), so that Ja, € RP, oy # 0, such that

alt < 0¥t € Co(Imep(U)); this implies that of &(x) < 0 Vo € U, v # 0. Since
the directional derivative 2% Sh(xg) is continuous as a functzon of direction v and because
.of the Hadamard dlrectlona,l differentiability of ‘h, it then follows that &Tah(mg) <0
Vo € CI(U), v 0. The whole resuit is then proved just assuming oy = 0 and a, = 0.

Suppose now condition #) holds. By means of a well known separation theorem
between convex sets, I(ay, ag, an) € (Int(C) x Int(V) x 0}, (ay, o, an) # 0, such that
(af, aq, 0n)Tt < 0Vt € Co(D(U,24)) 2 D(U,z0). A known result on polar cones (%)

%Let Ci,...,Cy, be cones, then (Cy x ... X Cp)* = (CF x ... x Cf).
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implies that (Int{C) x Int(V) x 0)F = (Int(C)* x Int(V)* x ) and hence, being C'
and V' convex cones (3), 3(ay, ay,an) € (CF x V'V x RP), (ay, ag, o) # 0, such that:

e, a oh
043:"5{'(279) +of (—é—i—(xo) +g(:co)) -+ af-«amg(:co) <0VwelU v#0. - (41)

The directional derivatives &£ (xo), 3%(xo) and Z&(zo) are positively homogeneous (of the
first degree) as functions of direction v, hence denomng with 7 = 2 we have:

ol (o 22 o) + o g_(mmhgf(%)) +afyle0) SO Vo€ Uio #0

This condition implies that « g(a:g) < 0 to prove this inequality suppose by contra-
diction that e g(zo) > 0, then for a vector v € U, v # 0, with ||v|| small enough, we
have ,

0 dg, oh, . ' '
1l (o )+ e o)) + o) >0

which is a contradiction. : ‘
Since oy € V¥ and g(zo) € V it is a g(zg);> 0 and hence, since o g{xo) <0, it

follows that of g(o) = 0.
Condition (4 1) becomes:

o .0
o7 (zo) + o a—g(x{,) £

0 <0 VvelUwvs#0

rivatives 8 (20), 5 (wo) and G (zo) are
Hadamard directional cilfferentla,bﬂity
at xg of f, g and h. =

<) Let us first prove, as a prehmmary I’esul‘
(a5, ap) # 0. If p = 0 this result is trivial since:
and Co(Ima(U)) = R just assume by cofitrad

that ap # 0 and

that if condition i) does not hold then
ere is no multiplier vector ap; if p 2 1
tion that both oy = 0 and o, = 0, s0

of 2% (z0) < -0 € CUV) \ {0},

which yields o5t < 0Vt € Iman(U). Asaconseqtience, it is o, T <0Vt e Co(Iman(U)) =
RP and this implies ay, = 0, which is a cor xadiction .

Suppose now by contradiction that both conditions 4) and ) are not verified, so that
(af, o) # 0 and i

s, by, ta) € Co(D(U, xo);
Since ay € O+, Qg € V+, (Od_f,Oig) 7—‘- 0, tfl

afby+ ozT + a}f‘th >0 \ (4.2)

C’l(C) so that Int(C)+ = CU{Int(C))* too.
= CI(C) so that Int(C)* = C*.




- Since (t5,tg;tn) € C’O(D(U,-:bo)) dg e N, g > 0, Jus,...,u, € U, such that

g 89 oh
(e tos) = 32 S o, o)+ a2, o)
hence
2.f 0 . 0 ' oh
afty+agty +anty = (a?gg($0) + a%—j(w@ + g g(wo) + ag‘(%f(mf)))

=1 i i : _ i

Z of dg oh
= ;_(a?a—%(wo) + aﬁ”a@(m) + afé@;(%)) <0

and this contradicts (4.2).

4.2 Hadamard differentiability assumptions

The previous fundamental result allow us to state the following necessary optimality
conditions in the decision space.

Theorem 4.2 Consider problem P and let U C R® be a cone which verzﬁes at least one

_of the following regularity conditions N1)-N2):
N1) p > 1 and Co(Iman(U)) # R2,
N2) Co(D(U, o)) C K(T,z0).

If the feasible point x5 € Sp s a local eﬁiment point then the following mazimum principle

condition holds: _‘ _
(Cn) Hoyp,ag, an) € (C x VT x RP), (o, 0, ) # 0, such that:

af

h
agg(xo) =0 and ozj‘;é—;(mo) + OJT?-Q'(.TQ) + ozf%;(xo) <0 Yo e CI(UY\ {0}

9 ov
Moreover, the following further results hold: ‘
i) f p=0 or Co(Imen(U)) = R then condition (Cn) is verified with (o, o) 5 0,
i) if the constraint gualification Co(Imagen(U)) = R™? holds, where
| | m dg oh
Imouan(0) = 0} {t eRme g~ (”55(560), %(m) WO U}
then condition (C) is verified with oy # 0,
- 4i4) assuming p =0 or Co(Iman(U)) = WP, if the constraint qualification
{deﬁﬂ?”\{O} (:139) € Int(V)} ﬂL(H,mg)ﬂC’o(U) # 0
holds, then condition (Cn) is verified with oy # 0.
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Proof If N1 ) or N2) holds then (Cy) follows directly from Theorems 3.1 and 4.1.
i) This result has been already proved within the proof of Theorem 4.1.
i) Suppose by contradiction that ay = 0, so that (cg, an) # 0. Then

%, pOh
of 52 (20) + 0 5 (90) < 0 Vo € CIU) \ {0},
and this ylelds aTt +afty, < 0 V(g ta) € Imagan(U). As a consequence, we ha,ve
oty +afty <0 V(tg,th) € Co(Imayeon(U)) = R™* and this implies (ay, @) = 0, which
is a contradlctlon
~ 4i) For i) we have that (Cy) is verified with {af, ) # 0. Suppose now by con-
tradiction that a; = 0 and oy # 0. Taken d € Co(U) such that 5%(3:9) € Int(V}) and
Gk (50) = 0 we get
e : of 9 oh
' or T4 Ton
ad (33{)) + Qg ad (3;9) + 2 ad (‘7"0) >0

which is a contradiction. : 0

T
Gy

It is worth noticing that Theorems 4.1 and 4.2 point out that in order to obtain a
necessary optimality condition in the decision space some additional hypotheses must be
assumed. " Specifically speaking, Example 3.1 pomts out that the necessary optimality
condition in the image space

K(T,z0) N (Int(C) x Int(V) x 0) = 0

holds even if the cone K (7, z) is not convex. On the other hand, in order to obtain a
necessary optimality condition in the decision space we have to use a cone U/ such that:

Co(DU, z0)) N (Int(C) x Int(V) x 0) = §

This means that in order to obtain a necessary optimality condition in the decision space
a suitable cone U must be chosen (see Example 4.1}, that is to say that some additional
"assumptions are needed. These additional assumptions, such as conditions N1)-N2) in
Theorem 4.2, are nothing but regularity conditions and have been called U-regularity
conditions in [21, 22, 23].

Example 4.1 Consider now Example 3.1 again. If the cone U = X; U X, U X3 =
T (X, H, ) is chosen then it is not possible to obtain the corresponding necessary opti-
mality condition in the decision space since Co(D(U, 5)) = R%. If we chovse U = X ;UX; |
we get Co(D{U, z0)) = {(z1,22) € R*: 21 + x5 > 0} and hence the corresponding opti-
mality condition in the decision space does not hold. In order to obtain condition (Cy),
we can choose for example U = X, UX,, U= Xy U X3, U = X, 4= 1,2,3, which are
cones verifymg the regularity condltion N2).

4.3 Fréchet differentiability assumptions

The aim of this subsection is to deep on the study of necessary optimality conditions in
the decision space in the case the directional derivatives of functions f, ¢ and h are linear
as functions of the direction. This property, together with the Hadamard differentiability
assumption, implies the use of Fréchet differentiable functions (see Subsection 7.1 in the
appendix). In this light, note that if f, g and A are Fréchet differentiable at zo € A then
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o L(H, xp) = Ker(Ju(zo)),
o Co(D(U,zp)) = D(CO(U),QZO),
o Co(Iman(U)) = Ja(xo)[Co(U)]

where, given the Jacobian matrix J,(xo) of h at 2o and given a set B C R™, the foliowing
notation is used: _ . _ ‘ '
Jh(ivg)[B] = {t el :t= Jh(mo)v,v = B}

Taking into account the Fréchet, differentiability of the functions f, g and f, Theorem
4.2 can be rewritten as follows.

Corollary 4.1 Consider problem P and assume. functions f, g and h to be Fréchet
differentiable at Ty € Sp. Moreover, let U C R™ be a cone which verifies one of the
following regularity conditions F1)-F2):

F1) p>1 and Ju(xe)[U] # R?,
F2) U is convezx and D{U,z) € K(T,o);

If the feasible poiﬁt xo € Sp 18 a local efficient point then the following MATIMum pm’ncz’plé
condition holds:

(Cr) oy, ag,0n) € (CY x VT x RP), (af, oy, ap) # 0, such that: | _
alg(ze) =0 and [0} Jp(zo) + o Jo(0) + aif Ja(zo)lo <0 Yo € CUU)
In particular, if D(R™, z0) C K (T, 10) then (Cr) reduces to the following:
(Crs) Fag, agcn) € (CF X V% ), (o, g, @) # 0, such that:
agg(mc) =0 and [arf ng(mg)'+ath(mg)] wm ()

Moreover, the following further results h
1) f p="0 or Jy(zo)[U] = R then co ) is verified with (df, ay) # 0,
i) if the constmﬂz’nt quelification | |
Jon(@o)[U] = R where 9,1 (w0) = [Jy(20), Ja(wo)]

holds, then condition (Cr) is vem’ﬂj .:'f‘wit :“ £ 0,

1) assuming p =0 or Ju(20){U] = RP, 4 nstraint qualification

(de®: J,(z0)d € jm(v N Ker(Ju(zo) N U # 0

holds, then condition (Cr) 3 fue'rzﬁed wath:cxf # ().

Notice that condition (Cpy) is nothmg but the Fritz John criterion, which gets to
the Karush-Kuhn-Tucker conditions if a Gonstrpmt qualification condition is verified.

Remark 4 1 It is also worth pointing ¢ an that the convex cone U in F2) does not
have to be a subset of 7(X, H, o). For nstaﬁce consider again Example 4.1 and let
U= Co(X; UXy) or U= Co(XsU X3); these cories verify the regularity condition F2)
~even if they are not subsets of 7 (X, H, x@‘)?}:‘- s




4.4 Regularity conditions in the decision space

The linearity of the directional derivatives of f, g and %, allow us to state the following
further regularity condition F3) which yields in the decision space, and not in the image
space like the previous ones. .

Corollary 4.2 Consider problem P and assume functions f, g and h to be Fréchet
differentiable at xo € Sp. Moreover, let U C R be a cone which verifies the following
reqularity condition: :

F3) U is conves and (U N L(H, zo)) C T(X N H,zo);

If the feasz’blé point o € Sp is a local efficient point then condition (Cr) holds. In
particular, if o € Int(X) and L(H,zq) = T(H, zo) then (Crs) holds. |

Pmof First notice that
UCT(X, H, zo) <= (UNL(H,z)) CT{XNH, z)

and that U C 7 implies D(U,z9) € D(T,20) © K(7, ). As a consequence, it holds
F3)=>F2) and herice the results follows directly from Corollary 4.1.

In the case o € Int(X) and L{H, xo) = T(H,zo) it is T(X N H,z0) = T(H, xy) =
L(H, zo) so that the results follows by choosing U = R" in F3). _ .

It is worth to point out that the regularity condition F3) (which requires the convex
cone U to be a subset of T{X, H, )} is much stronger than F2), as it has been discussed
in Remark 4.1. _ ' ‘

The. following further regularity conditions in the decision space F4), F5) and F6)
can now be derived from F3) by means of the behaviour of conical approximations given
in Property 7.5 and the generalizations of the Lyusternik theorem {see Subsection 7.3 in
the appendix) given in Theorem 7.2 and in Corollary 7.1.

Corollary 4.3 Consider problem P and assume functions f, g and h to be Fréchet
differentiable at o € Sp. Moreover, let b be continuous on o neighborhood of zo and let
U CR™ be a cone which verifies one of the following regularity conditions: :

F4) U is convex and (U NT(H, zo)) € T(X N H, o),
F5) U = I(X, zy) is convez;
F6) U =T(X,x) and X is convex;

If the feasible point xo € Sp z's. a local efficient point then condition (Cr) holds. In
particular, if zo € Int(X) then (Cry) holds. :

Proof Let us first prove Fi). If Jy(zo) is not surjective then Jy(zo)[U} # R? and hence
the result holds for F1) of Corollary 4.1. If Jy{xo) is surjective then for Corollary 7.1 it
is T(H,z) = L{(H, z5), so that the results follows from F3 ) of Corollary 4.2.

As regards to F5), it follows directly from F4) and Property 7.5.

Let us now prove F6). First of all, notice that since X is convex then T{X,xo) is
convex too. If Jn(zo)[T(X,z0)] # RP then the result holds for F1) of Corollary 4.1. If

10



Ju(zo)[T(X, 20)] = NP then for Theorem 7.2 it is T(X N H,xo) = L(H,xo) N T(X, x0),

hence the results yields from F&) of Corollary 4.2. ,
Finally, in the case zy € Int(X) it is T(X N H,zo) = T(H, zo) so that the results

follows by choosing U = R" in F4). ' 0

- Notice that F5) represents a generalization to multiobjective problems of the result
stated in [6] and related to a scalar objective function f. Notice also that F6) represents
a generalization of the results in [44, 49).

Finally, it is worth pointing out the following further particular case which will be
useful in the study of duality results.

Property 4.1 Consider problem P, assume functions f, g and h to be Fréchet differ-

~entiable at xo € Sp and let h be continuous on a neighborhood of zo. If X is convex and -

the feasible point o € Sp s a local efficient point then the following mazimum principle
condition holds: :

o Jas aq,an) € (CT x VT xR, (ap, ag, o) # 0, such that:

“alg(me) =0 and [0 J5(zo) + of Jo(zo) + af Ju{zo)l(y — o) <O Vy € X

Proof Follows from F6) of Corollary 4.3 by choosing U = F(X, zo) Q T(X,zq). O

5 Sufficient optimality conditions.

The aim of this section is to show how the necessary optimalitﬁr conditions previously
stated become sufficient assuming suitable generalized concavity properties (see Subsec-
tion 7.4 in the appendix). ‘ '

' With this aim, it is useful to introduce the following Lagrangean type function:

£($, Gy, g, O!h) = Cl{:;:f(fﬁ) + agg(x) + a}fh(m)
and its gradient with respect to variable x:

VL (5, p g, 00)F = [0FTp(x) + ol Jy(2) + of Ju(2)]

In this light, notice that the maximum principle condition given in Property 4.1 can be
rewritten as: : '
VLy(zo,af, gy on) (y—20) <0 Vye X

The following result holds.

Theorem 5.1 Consider problem P and assume functions f, g and h to be Fréchet
differentiable. Let also g € Sp be a feasible point verifying the following condition:

o Jayp, ap0) € (CT x VT xRP), (a5, ay, o) # 0, such that:

agg(xg) =0 and Vﬁm(wg, af, 0, 08) (y — 1) <0 Vye X

11



The following properties hold:

1) if function L(x, oz, 0, ap) is strictly pseudoconcave with respect to variable x then

i) if oy # 0 and function L(z, oy, g, ap) 15 pseudoconcave with respect to variable x
then Zy € Sp such that f(y) € flzo) + Int(C).

Proof Let us first prove property i). Assume by contradiction that:

3y € X such that g(y) € V, h(y) =0, f(y) € (wo) +C, £(y) # f(xo)

Since (ay, ay, an) € (CF x V* x RP) it yields:-

alg(y) > 0, afh{y) =0, af f(y) > of flo)

By means of the hypothesis it is also h(z) = 0, so that of k(o) = 0, and o] g(zo) = 0.
As a consequence it results: :

ﬁ(yv Oy, Qg, C"h) 2 'C(i'ﬂa Ay, Rg, O.’h)
From the strict pseudoconcavity of L(z, o, &, o) With respect to z it then follows:
Vﬁx(mi), Oy, Uy, ah)T(y — 113()) >. 0

which is a contradiction. ,
Property i) can be proved analogously. With this aim, just recall that since C
a closed convex pointed cone with nonempty interior then conditions oy % 0 and

f(y) € flzo) + Int(C) imply that oF f(y) > of f(o). ]

6 Duality results

The aim of this section is to study duaiity results for problem P, which from now on will
be referred to as the primal problem:

| C_max f(x)
P { &€ Sp

where Sp = {z € A : g(z) € V,h(z) = 0,z € X}. For the sake of convenience, the
open set A € R” is assumed to be convex while functions f, g and h are assumed to be
Fréchet differentiable.

6.1 Preliminary definitions

By following two classical approaches of the literature, the following dual problems can
be defined by using the previously stated maximum principle conditions (notice that in
the Wolfe type dual it is ¢ € Int(C)): '

12



Mond-Weir type Dual

C_min f(z)
ofg(z) <0, afh(z)=0
| v*cm(xvaf?aga ah)T(y - m) <0 Vy € X:
z€A a;e CT\ {0}, oy €V, ap € WP

Wolfe type Dual

C-min f(z) + gFlogg(z) + of h(z)]

VL (z,af g 0) (¥ —z) S0Vy € X,
zeA, o€ CP\ {0}, g €V, apeR?

A comparison of these two dual problems points out that the easiest is the objective
function, the more complex are the constraints, and vice versa. '

In the literature another approach has been proposed to manage in an unifying frame-
work both the Mond-Weir and the Wolfe duals. With this aim the following notations
are needed:

e 6 €{0,1} is a 0 — 1 parameter;
* J= {1, Jo, J3, Ju} is a partition of P = {1,. . O}

o h(z) = [ (), halz), ha(z), ha(x)] and ap, = (Qpy, Oy, by, Giny ) aTe Partitioned ac-
cordingly to J. :

The following mixed type dual problem D will be referred to as the dual of P (%):
Mixed type Dual |

C._min Fl(z, g, og, tg)
(1= 8)aTg(@) + ol halz) < 0
D: af hs(z) =0, of hiz) <0
v£m($aaf:aga ah)T(y - "E) < 0 vy € X:
z€A apeCT\{0}, € V', ap eRP

where F(z,ayp, aq,0p) = f(x) + E%E[éagg(:c) + a} hi(x)]. From now on the feasible
region of D will be denoted as Sp.
It is worth noticing that the Mond-Weir type dual can be obtained, as a particular |

case, with 8 = 0, J3 = {1,.:.,p} and J; = J, = J; = 0, while the Wolfe type dual can
be obtained with 6 =1, J; = {1,...,p} and o= J3 = Jy = 0. '

4Notice that mixed type dual problems have been firstly introduced by Xu in [63] in the case of
paretian cones C and V and a primal feasible region defined by just inequality constraints. Similar
results for a primal feasible region defined by both equality and inequality constraints been proposed in
1, 2, 52]. In [25] mixed type duality have been studied for generic convex cones C and V' and a primal
feasible region defined by equality, inequality and sef constraints.
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It can be easily seen that when the dual problem has a more “complex” objective
_ function then there is a smaller number of constraints and hence a bigger feasible region,
while when the dual problem has a “simpler” objective function then there is a bigger
number of constraints and hence a smaller feasible region.

For the sake of convenience, the following further function can be introduced:

‘D(mi Qg, Chyy Lhg, Ct’h4) = (1 - 5)0459(@ + Olgzhg( ) + ah3h3(m) + ah4h4( )
| = L(z,az,0g ay) — o F(T, oy, 0g, @)

Finally, notice that the following helpful properties follow directly from the deﬁnitions': ‘
Ca) Flz1,ar, 0q,08) € flz1) + C V(g og,0n) € (CT % VT x RP), oy #0,Vz, € 5p
CB) D(wg,ag,ahz,ahmahg < 0< D(ml,ag,ahz,aha,am) V(mg,a‘f,ag,ah) & SD and

Vz; € Sp

6.2 Weak duality

The following weak duality result can now be proved assuming some suitable generalized
concavity properties (see Subsection 7.4 in the appendix).

Theorem 6.1 Let us consider the primal problem P and the dual problem D, and let
C* be a cone such that C* = C or Int(C) C C* C C'\ {0}. Assume also that af least
one of the following conditions (C:), (Cs), (Cs) and (Cy) is verified for all multipliers
(af, ag 0n) € (CY XV X RP), ay # 0: : '

(Cy) C* = Int(C) and function L{x, oy, &g, ) i8 pseudoconcave with respect to x;
(Cy) C* = C and function L(z,ay, ag, an) 48 strictly pseudoconcave with respect to T;

(C3) function F(z,...) is C*-pseudoconcave and function D(z,...) is quasiconcave with
respect to x; ‘

(Cy) function F(z,...) is C*-quasiconcave and function D(z, ...) is strictly pseudocon-
cave with respect to x.

Then, V&, € Sp and ¥(x2, ap, oy, ) € Sp it is:
f(xl) ¢ '7:(51"2: Qs Q’g:ah) +C*

where in the case C* = C' it is also assumed that x4 # 3.

Proof Suppose bjr contradiction that Jz1 € Sp and 3(zs, ay, g, ap) € Sp such that
fz1) € Flzg, o, g, o) + C*

For condition Cy4) it is F(z1, oz, 09, o) € f(zs) +C so that, being C a closed convex
pointed cone with nonempty interior, it results

Flar, 05, g, an) € F(wa, @y, 0, o) + C

14



It can be easily seen that x; # o, in fact if C* = C' this is guaranteed by the hypothesis,
while if C* = Int(C) this is implied by the previous condition.
[Case (Cy), (Cy)] Since ay € C* \ {0}, it results:

ot Fxy, o, O, th) 2 ol F(wa, agyag, ) [> 0 if C* = Int(C)]

For condition Cg) it is D(z1, g, Gy, Oy, Ony) = D(T2, &g, Qpy,y Cky, On,) 80 that, being
Lz, a5, g, ) = D(€, O, Oy, O Othy) + @ F (3, 0, g, ) it yields:

Lz, op, gy an) > L{xa, 0p, gy 00)  [> 0 CF = Int(C)]

As a consequernce, being L£(z, oy, oy, 0tp) strictly pseudoconcave with respect to x [3ust
pseudoconcave if C* = Int(C}], it follows:

Vﬁm('a:g, Qp, g, th)T(LIS; - .362) >0

This implies that (s, oy, oy, 04) ¢ Sp, which is a contradiction.

[Case (C3)] Let Jg,(z, op, ag, o) and VD,(z, . . .) be, respectively, the Jacobian ma-
trix of F(z, 0y, 0y, o) and the gradient vector of D(x,...) with respect to variable z.
Since F(x, ay, ag, o) is C*-pseudoconcave with respect to z it yields

erw ($2,Odf, Qig, ap)(zy — x3) € Int(C)
hence, since ay € C* \ {0}, it results
aifJ;.—m (29, 0p, 0, g ) (21 — 2) > 0

For condition Cg) it is D(z1,...) > D(zs, .. .) so that, being D(z, ...) quasiconcave with
respect to the variable z, it Tesults

me(ibg, . .)T(Iﬁl - 3’32) > 0
As a consequence, it yields
VLy(Ta,. . ) (21 — 22) = VDyu(s,...) (1 — 22) + oF Jr, (T2, .. J(@1 — 22) > 0

This implies that (xq, oy, ag, an) ¢ Sp, which is a contradiction. _
[Case (Cy)] The proof is analogous to the one of the previous case. [l

Note thai:, in the previous theorem, the bigger is the cone C* the stronger is the
proved necessary condition. Notice also that in [25] the authors proposed some other
generalized concavity properties guaranteeing the weak duality result.

Corollary 6.1 Let us consider the primal. probiem P and the dual problem D, dnd let
C* be a cone such that C* = C' or I’nt(cl'_,’:’__
one of conditions (Cy), (Cy), (Cs) and (CE
(CF x VT xRP), a; #0. If (z, 05,04

—~

z € C*.argmax(P) and



Proof As a preliminary result, note that = €. Sp implies hy(z) = 0 so that from

assumption dagg(x) = 0 it yields F (z, £ ap) = f(z).

Suppose by contradiction that z ¢ C*_argmax(P); that is to say that there exists y € S,
such that f(y) € f(z)+ C*; hence f(y) € Flz, aji g, ap) -+ C* and this contradicts ‘rhe
wealk duality result. ' :
Now suppose by contradiction that (z, oy, ji¢ C*_arg min(D), that is to say that
there exists (Z, af,ag,ah) € Sp such that Ffz, afzag,ah) € F(Z, Gy, Gy, dip) +C*; -hence
f(x) € F(&, &y, Gp) + C* and this contradicts the weak duality result too. )

6.3 Strong duality

It is now possible to prove the following strong duality result. Notice that it requires the
set X to be convex in order to verify the assumptions of Property 4.1.

. Theorem 6.2 Let us consider the primal problem P and the dual problem D, and let
C* be a cone such that C* = C or Int(C) C C* C C\ {0}. Assume also that at least
one of conditions (C1), (Cy), (C3) and (Cy) is verified for all multipliers (ap, ctg, o) €
(Ct x V x RP), ay # 0, that X is convex and that a constraint qualification condition
holds for problem P. Then, Y& € C°_argmax(P) Ja; € C+\ {0}, 3oy € VF, Ty, € g
- such that:.

(2,07, 0g,0p) € C*_argmin(D) and f(z) = F(z, af,ag,ozh)

" Proof Let z € C®.argmax(P); since a constraint qualification condition holds and X
is convex, for Property 4.1 Jay € C*\ {0}, Jo, € VF, Jo, € WP such that ol g(z) =0
and ,
VL (z, af,ozg,afh) (y—2)<0VyeX.

Since h{z) = 0 and of g(z) = 0 it results fla) = F(z, a5 0, ap) and (z,0f, 0, ) €
Sp. For the weak duality theorem A(Z, &y, &g, &) € Sp such that

‘7:(327 &, ag'; th) == f(.??) € F(E, afa ag; ah) + c*
In other words, A(%,&;, &y, Gs) € Sp such that
f(ff, Qy, 629, &}3) € ‘7:(33, Gy, g, a’h)'w- cr

and hence (z, ay, g, ap) € C*_argmin(D). | | o
The following result followé directly from Theorem 6.2.

Corollary 6.2 Let us consider the primal problem P and the dual problem D, and let
C* be a cone such that C* = C or Int(C) C C* C C'\ {0}. Assume also that at least
one of conditions (C1), (Ca), (Cs) and (Cy) is verified for all multipliers (o, 0, o) €
(CT x VT x RP), af # 0, that X is convex and that a constraint qualification condition
" holds for problem P. If C*_argmin(D) = 0. Then, C°_argmax{P) = 0.

The following further duality result follows from the weak and the strong duality
~ theorems.
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Corollary 6.3 Let us consider the primal problem P and the dual problem D, and let
C* be a cone such that C* = C or Int(C) C C* C C'\ {0}. Assume also that at least
one of conditions (Cy), (Ca), (Cs) and (Cy) is verified for all multipliers (ay, o, o) €
(CH x V' x RP), oy # 0, that X is convex and that o constraint qualification condition
holds for problem P. If C*_argmin(D) = §. Then,

F(&1) = Flas, 05, g, o) & (C* U —~C%)

Yz, € C°argmax(P) and V(xy, af, oy, ) E Ciargmin(D).

Proof Let z; € C°. arg max(P)
duality theorem it is

\ 70}, Jda, € V¥, Jap, € W such that
1, &f, 0, ). As 8 consequence, con-

f(wl,af,ag, ap) & (m ay, o, ap) — C*
and hence for the equality f(z1) = F(z1

f(z1) —f(x

which proves the result.

7 Appendix

The aim of this appendix is to summari
in the study of optimality conditions.

1 derivability and differentiability are
tudy of the subject.

s

gpen set, and let zg € A. The following
limit, if it exists:

f — .
fD(a;Qa d) - A}_E’éi_i_

is called the Dini derivative of function f
The following limit, if it exists:

fylzo,d) = lIim

A=

is called the Hadamamd derivative of funct



It is clear that the existence of the Hadamard derivative implies the existence of the
Dini derivative and the two derivatives coincide. In this light, for the sake of simplicity,
the same symbol 3 of (:1:0) can be used to denote both the two derivatives. Notice that
the directional derwa,tlve f5(xg, d) is positively homogeneous (of the first degree) as a
function of the direction d, that is to say that |

Iplzo, pd) = pfp(zo,d) Y >0

Definition 7.2 Let f:A— §R with 4 C R" open set, and let xg € A. Function f is
said to be:

- o Dini differentiable at the point zg if the limit f,(2g,d) exists and is‘ﬁnﬂ;e for all
directions d € R™;

o Hodamard differentiable at the point xg if the limit fi; (o, d} exists and is finite for
all directions d € &";

o Dini uniformly differentiable at the point xq if it is Dini differentiable at zq and:
f(zo+d) = f(zo) + fp(zo, d) -+ o(l|l])

The following fundamentai result holds (See for example [31]).

Property 7.1 A function f is Hadamard dzﬁerentmble if and only if it is Dind umformly
differentiable and its directional demvatwe (:co) is continuous as a function of direction.

‘The following example points out that the Dini uniform d1fferent1ab1hty does not
guarantee the continuity of the directional derivative as a function of direction. '

- Example 7.1 Let {a:k} be a sequence of dszerent points on the unit circle of the space
R? and define the function:

f(z) = kX if ¢ = Axy, for some k and A > 0
1 0 otherwise

It can be verified that f is Dini uniforinly differentiable at the point zp = (0,0} even if
the directional derivative f},(zo,d) is discontinuous as a function of direction.

Another important property is the following (see for exazﬁpl_e [31]).

Property 7.2 If a function f is Hadamard differentiable al some point xq, then it is
continuous at this point.

Notice that a Dini differentiable function (not Dini uniformly differentiable) with
directional derivatives continuous as a function of direction may be discontinuous, as it
is pointed out in the next example.

Example 72 Let X = X1 UXs C R? where X; = {(z1,22) € §R?' : Ty > 73} and
Xy = {(z1,22) € R% : 35 < 0}, let 2o = (0, 0) and define the function:

1 ifzeX
.f(“:):{o if o ¢ X
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It qari be verified that f is Dini dif’fe_rentia‘ ¢ at zgi(but not Dini uniformly differentiable)
with f} (o, d) = 0 for all directions d. Fung

‘the directional derivative fj(xg,d) is con

for all d:

The followmg further result follows dlrectly from Property 7.1.

Property 7.3 If a function f is Fréchet differentiable at some point xo, then it is
Hadamard differentiable at that point.

The relationships among the various differentiability properties are summarized in
the following scheme. It is worth pointing out that Example 7.1 provides a function '
which is Dini uniformly differentiable but not Hadamard differentiable, while Example
7.2 provides a function which is Gateaux differentiable but neither Fréchet differentiable
nor Dini uniformly differentiable. There is no need to recall that the absolute value
single variable function is Hadamard differentiable but not Géteaux differentiable since
the directional derivatives are not linear as functions of direction.

Hadamard = Dini Uniformly =  Dini

fi fr

Fréchet — Gateaux

As a conclusion, it is worth recalling that a vector valued function F': A — R is
[Dini, Hadamard, Géteaux, Fréchet] differentiable at z if all its components are {Dini,
Hadamard, Géteaux, Fréchet] differentiable at x.

7.2 Conical approximations

In this subsection the main conical approximations,.useful in optimization, are summa-
rized. See for example [6, 33, 34] for a complete study of the subject. Given a point
zo € CI(X) C R" these cones are aimed to provide a local approximation of the set
X — {xy}, which is helpful for the investigation of optimality conditions.
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Definition 7.4 Let X C ®” be a nonempty set and let zo € CI(X). The Bouligand
Tangent cone to X at g, denoted with T(X, xo), the cone of feasible directions to X at
o, denoted with F'(X, z,), and the cone of interior directions to X at o, denoted with
I(X, zy), are defined as follows: :

T(X, SU()) = {d e R 3{$Ic} C X,z — Zg, H{Ak} C §R++,)\k — 00,
' d= lzm Mz — 20) |

F(X,z9) = {d& §R’“” 36 > 0 such that z + )\d € X VAe(0,6)};
I(X,zp) = {deR":3e>0, 3§ > 0 such that ||y — d|] < & imply
T+ Ay € X VAe (0,6}

It is worth noticing that the Bouligand Tangent cone is closed, that {0} € T(X, zp)
and that T'(X, zo) can be rewritten as follows: '

T(X,20) = {de®R":d=pv,p>0,3az} C X,z — o, Tp # To,

Tk — B }
V= lim w———te
k—+oo ||z —J-a:g.“ ‘,

On the other ha,nd the cone of interior dlre_c 10‘? is open. Notice also that none of these
cones is necessarily convex. The followmgf‘mam ,roper%ues hold (see for example [34]):

(Xa m0) = %’n’
;1:370) C F(X3,%0),

o if 7o € Int(X) then I(X,xo) = F(

S

e if X; € X, then I(X1,z) C I(Xa,
T(X1,20) C T(X2, zo);

o T(X, 20) = T(CU(X), 7o);
o I(X,30) = I(Int(X), o);
o 0 e I(X,zo) if and only if zo € Int
o 0 € F(X, xzp) if and only if 2 € X;
o I(X,z¢) = [T{XC,20)]° and T(X

The following inclusion relationships
Property 7.4 Let X C " be a nonemp

cz(F(X, o)) € T(X, 70} |
F(CI(X),x0) € T(X,0)

I(X,z0) C Int(F(X,20)) € F(X
I{(X,20) C F(Int(X),z0) € F

Proof Directly from the definitions we X,zo) C F(X, acg) C T(X,zo). Hence,
since I(X,xo) is open and T(X,zo) is d We have I(X,zg) C Int(F(X,z)) and
CUF(X,m)) € T(X,zq). Since Int(X):C X' C CUX) we have F(Int(X),zy) C

F(X,z¢) C€ F(CI(X),z0). The result the) Egollows since T(X,zo) = T(CUX), zo) and
I(X, CC()) e I(Int(X),CEg) ’ [}



In order to study optimality conditions, a key tool is the conical approximation of
the intersection of two sets. . With this aim, given zo € CI{X N H) € CI{X) 0 CI(H)
with X C R" and H C R* sets such that X N H # @, in [34] the following results are
proved. _

o [(XNH,zp) = I(X,z0) N I(H, z0);

o F(X M H,z0) = F(X,20) N F(H, o)

o T{XNHuz) CT(X,z0) N T(H Zo)-

The following example points out that the last inclusion relationship may be strict.

Examp}e 7.3 Let X = {(z1,22) € R2: 29 = 2%, 21 > 0}, H = {{z1,32) € B> : 35 =
—22, 21 > 0} and let 2o = (0,0). It is X N H = {xo} so that T(X N H,ze) = {(0, )} |
while T(X CL‘Q) (H w{)) = {(161,322) = %2 g = 0 Ty = 0} % T(X N H, LEQ).

The following further useful property can be easily proved.

Property 7.5 Let X C §R’” andH C R™ be such thatXﬂH # 0 and Eet zo € C{XNH}.
Then, ‘

I(X, .',Cg) M T(H, iEo)
F(X, o) N F(H,z0)

C T(X N H,mo)
C T(X nH, 370)

Proof The second inclusion relationship follows trivially since
F(X,zo) N F(H,z¢) = F(X " H,20) € T(X N H,zq)

Let us now prove the first one. If I(X, xo) N T(H, zp) = @ or I(X, zo) NT(H, zo) = {0}
the result is trivial. Assume now that there exists t # 0, t € J(X,z0) N T(H, z¢);
since t € T(H,zo) then Iz} C H, zx — o, H{ M} C BT, Ay — +o0, such that
t = limg— 100 M@k — Zo); since £ € I(X,zo) then Je > 0, 36 > 0 such that [y —¢ff <
imply 2o + py € X Vo € (0,¢). Since My — +oo and ¢ = liMj 100 Ak{2x — Zo) there
 exists an integer k > 0 such that Vk > Eitis ||(Ak(zs — z0)) — 8] < 6 and - 1 < ¢; hence,

assuming y = A\g(zx — o) and p = 5+ - we have:
1 : '
Ty = Lo+ R;(,\k(xk — ’IJQ)) e X

Hence, Yk > k we have z; € X N H so that t € T(X N H, xg) aﬁd the result is proved.

In order to deepen on the previous property, notice that in general

Int(F(X,20)) NT(H,zo) € T(XNH, ),
CUI(X,z))NT(H,20) € T(XNH, o),
CUF(X,20)) NCUF(H,x0)) € T(X N H, o).

as it is shown in the next examples.

21



Example 7.4 Let X = Xl UX, C R? and H C R? where:

Xy = {(z1,29) € R*: 2y > 227}
Xy = {(z1,%2) € R 2, <0}
H = {(mg,m2)€§R2i$2W$?:0}

Defining zo = (0,0), it is X N H = {xo} so that T(X N H, 339) {0}. On the other
hand, it is T(H,zo) = {(21,22) € R? : 25 = 0}, F(X,z0) = ( ,Zo) = R? and
I(X, z0) = {(z1,%2) € R? : 2 # O}, so that CU(I(X, zp)) = Int(F(X,20)) = R Asa
consequence it results:

Int{F(X,z0)) N T(H,z0) = T(H,20) € {0} =T(X N H,z)
CUI(X,20)) NT(H,zo) = T(H, o) ¢ {0} =T(XNH, zo)

Example 7.5 Consider the following convex subsets of R

X = {{z,1) € R rzy >t}
H = {{z,72) € R*: Loy = 0}

Defining zo = (0,0), it is X N H = {z0} so that T(X N H,zo) = {0}. On the other
hand, it is F(H,zo) = T(H,zo) = H and F(X, o) = {(z1,22) € R : 32 > 0}. Asa
consequence it results:

CUF(X, 20)) NCUF(H,zo)) = H € {0} =T(X N H, )

To conclude the discussion, it is worth providing the following result proved in [6]:
if zp € Int(X) ’chen T(X N H, :1:0) T(H, xo)

Finally, let us recall the following propertles (see for all {33, 34]) dealing for locally
convex sets (°). ‘ ‘

Property 7.6 Let X C R be a locally convex set at 2o € CU(X ) Then,
o I(X,20) = cone(fnt(X), ?E(}).,‘
o F(X,x) = cone(X, xg);
e T(X, ég) = Cl(cone(X, xo)).
All these conical approzimations are convez. Furthermore, if Int(X) # 0 then,
o I(X,zo) = Int{T(X, z0));
o T(X,zq) = Cl{I(X, z0)).

5X C W™ is o locally convex set at xg if 31, arbitrary open ball about xg, such that X N Iy, is
convex.
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7.3 Generalized Lyusternik Theorem

In optimization theory it is sometimes useful to study conical approximations of the
points verifying some equality constraints.

Definition 7.5 Let h: A — P, with A C R" open set, be an Hadamard differentiable
function and let H = {x € A : h{z) = 0}. Given a point xo € H, the linearizing cone to
H at zy, denoted with L{H, ), is defined as follows

L(H, CE(}) = {0} U {d e R" \ {0} . h}I(CC(),d) = O}
The following fundamental preliminary result holds.

Property 7.7 Let h : A — %P, with A C R" open set, be an Hadamard dzﬁ”erentzable
function and let H={zx & A: h( ) =0}. Given a point zo € H it resuls

T(H, ) € L(H, Tg)

Proof Let d € T(H,zy) and let us prove that d € L(H, zp). I d = 0 the result is trivial.
- Assume now d # 0; then, Iz} C H, zp — o, 3{} C R, Ay — 0% such that
d=limy_yo0 Jf— Let us define vy, = JT— so that v, — d and z, = xo -+ Ape. It 18

- - h{zy) — h(:
g d) =  Tm St M) Zhleo) Mze) ZR2o) _ i 0=
: M= 0 g —d Ak k—+00 - A kotoo

since h(zg) = 0 and for all k it is h{z;) = 0 and Ay > 0. The result is then proved.

In order to study optimality conditions, it is helpful to determine suitable assumptions
guaranteeing that T(H, zq) = L{H,zo). In this light, & very well known result is the 50
called Lyusternik Theorem (see for all [44, 48]). : '

Theorem 7.1 [44] Let h : X — R?, X C §R”, be a given mapping and let zg € H =
{z € ®": h(z) = 0}. Let also h be Fréchet differentiable on a neighbourhood of zo, let
Jn(z) be continuous at zo and let Jy(zg) be surjective. Then it follows: '

T(H, o) = Ker(Jy(zo)) = L(H, o)
The Lyusternik theorem have been recently generaii.zed in [46].

Theorem 7.2 [46] Let us suppose the following:

s function h: R* — RP s continuous on o neighborhood of zo and Frechét differen-
tiable at xg,

o X CR" is a convex set and xg € X N H, where H = {z € R" : h(z) = 0},
o_the following regqularity condition holds: Jy(zo)[T'(X, zo)] = RP.
Then T(X N H, 5130) = Ke?‘(Jh(SE(})) NTX, LE{}).

The following corollary follows directly from Property 7.2 just assuming X = R".
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.Corollary 7.1 Let us suppose the following:

o h: R* — RP is continuous on a neighborhood of xy and Frechét differentiable at
Lo, .

o 20€ H ={z R hiz) =0},

o Ju(zo) is surjective (Ju(zo)[R") = RP), so that the gradients Vhy(zo), . .., Vhy(zo)
are linearly independent.

Then T(H, xo) = Ker(Ju{zo)) = L{H, o).

7.4 Generalized Condavity

Generalized convexity/concavity has been widely studied in the recent literature due to
its usefulness in applicative problems and in ‘optimization. Both scalar and multlob Jectzve
generalized concave functions have been defined and studied (see for example [5,40]). 1
the following the classes of generalized concave functions used n this paper have been
recalled. - ‘ :

. Definition 7.6 A differentiable écalar function f : A — ER_, A C R™, is said to be
quasiconcave if: '

flz) > flz) = Vilz) (2 —20) >0  Vay,z0 € A, 21 # 2o,
it is said to be pseudoconcave if:
f(acl) > fza) = Vf(a:g) T(py—a9) >0 Vo, a2 € 4,
~ while it is said to be strictly pseudoconcave if: |
fla) > f(ze) = V(@) (@1—122)>0 Vo2 €A 2142

Definition 7.7 Let C' C R° be a closed convex pointed cone with nonempty interior,
and let C* € C be a cone such that C* = C or Int(C) € C* € C'\ {0}. A differentiable
vector valued function f: A4 ~» R®, A C R, is said to be C*-quasiconcave if:

f(:C;) & f(ﬂ?z) +C* = Jf(.??g)(&?l o $2)' e’ YV, 20 € A, 1 % T3,
while it is said to bé C*—pseudoconéavé if: |

f(iEl) S f(il?g)‘"i- cr = Jf($2)(£131 - .‘Eg) € Int(C) Vﬁ?g,.’!)g € A, 1y 5 zo.
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