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BERNSTEIN-TYPE APPROXIMATION USING
THE BETA-BINOMIAL DISTRIBUTION

Andrea Pallini

1. INTRODUCTION

The Bernstein polynomials are generally regarded as the most basic tools for the uniform
approximation in the sense of Welerstrass of a continuous and real-valued function g on the closed
interval [0,1]. The Bernstein polynomials are elegant linear positive operators. The Bernstein polynomials
of order m are defined by the binomial distribution p, (k;f), for k=01,...,m, where ¢ &[0,1] is the
domain of g. The convergenice of the Bernstein polynomials to g is uniform, as m — . Multivariate
versions of the Betnstein polynomials can be defined by products of independent binomial distributions.
See Kotovkin (1960), chapter 1, Davis (1963), chaptet 7, Feller (1968), chapter 6, Feller (1971), chapter 7,
Riviin (1981), chapter 1, Cheney (1982), chapters 1 to 4, Lorentz (1986) DeVore and Lotentz (1993),
chapter 10, Phillips (2003) chapter 7.

The Bemstein-type approximations of ordc—:r m in Palhm (2005) improve on the degree of
approximation of the Betnstein polynomials by considering a cotivenient approximation coefficient in
linear kernels. The convergence of these Betnstein-type approxlmatLons is uniform, as m —> .

Here, following Pallini (2005), we study the Bernstein-type approxitation of order m, that can be
defined by using the beta-binomial distribution. We obtain integral operators that hpprbximate to 2’

contiftuous and realmvalued' function g on any closed interval D¢ R'. We also obtain their multivariate

versions for a continuous and real ~valued function g on any closed interval D < R? . The convergence of
these univatiate and multivariate Bemstem—typc approximations is uniform, as m ~» 0.

- In section 2, we overview the univatiate and the multivatiate Bernstein polynomials. In section 3,
we present some basic notions for the use of the beta-binomial distribution in approximation. In section
4, we propose the univatiate and multivatiate Bemnstein-type approximations that can be obtained by the
beta-binomial distribution. We study the uniform convergence and the degree of approximation. We also
compate these Betnstein-type apptoximations with the Bemstein polynomials. In section 5, we study the
Bemstein-type estimators for smooth functions of the population means. In section 6, we discuss the
results ‘of a simulation smdy on some examples of smooth functions of means. Finally, in section 7, we
coticlude the contribution with comments and remarks. _ ‘

We refer to Barndorff-Nielsen and Cox (1989), chapter 4, and Sen and Singer (1993), chapter 3,
for more details on the smooth functions of means and their application to classical inferential problems.

2. BERNSTEIN POLYNOMIALS

Let P, be the space of polynorfxiais P(x) of degree at most m, for all real numbers x. Let g be
a bounded and real-valued function defined on the closed interval [0,1]. The Bermnstein polynomial
B, (g:x) of order m for the functon g is defined as



B,(g;x)= i glm%) (]Z} - x), '_ | M

whete m is a positive integer number, and x €[0,1]. See Lorentz {1986), chapter 1, and DeVore and -
Lorentz (1993), chapter 10. Point x in (1) is the population probability for the binomial distribution,
- where x €[0,1]. Tt is seen that B, (g;x) € P, for every x €[0,1]. If g(x) is continuous on x € [0,1], then

we have that Bm(g;x)ﬁ g(x), as m —» o, uniformly at any point x € [0,1]. The basic proofs of this

uniform convergence can be found in Rivlin (1981), chapter 1, and Lorentz (1986), chapter 1. See also
Korovkin (1960), chapters 1 to 4, Davis (1963), chapter 6, Feller (1971), chapter 7, and Cheney (1982),
chapters 1 to 4, DeVore and Lotentz (1993), chapter 10, Phillips (2003), chapter 7.

Let gbe a bounded and real-valued function defined on the closed g-dimensional cube [0,1}7.
We let x =(x1',...,xq)T, whete x €[0,1}Y. The multivatiate Betnstein polynomial B, (g;x) for the
function g is defined as '

=0 k=0 4

e < | - - m m ¥ My =y ¥, Mg ~¥,
B (g,x) Z 2 g(mllvl,...,mqlvq)[ IJ»--.[V”’]xli(lwxi) ‘ ‘---xqf(i—xq) L (2)
g ‘

whete m = (mw..,mq)T ate positive ii}téger numbers, and x €[0,1]7. See Lotentz (1986), chaptef 2, and
‘DeVore and Lorentz (1993), chapter 1. Points ,...,%, i (2) ate the population probabilities for the

product of g independent binomial distributions, where x €[0,1]7. It is seen that the multivatiate

Bemstem polynomial B (g;x)eP,, where m= Z m, is the total degree in B {(g;x), for every

=i
x €[0,1]?. The multivarate Bernstein poiynon—ual B, (g;x) converges to g(x%) uniformly, at any q-

dimensional point of continuity X € [0,1]%, as m, —» oo, where i =1,...,q . See also Pallini (2005).

3. THE BETA-BINOMIAL DISTRIBUTION

More accutate versions of the Betnstein polynomials B (g;x) and B (g;x) defined by (1) and

(2), where x ¢ {0,1] and x e [0,1]7, can be obtained by the beta-binomial distribution, that is reviewed and
studied in Wilcox (1981) and Johnson, Kemp and Kotz (2005), chapter 6.

We recall that the complete gamma function F(a) is defined as F(a) = r t”' “dt, where a>0,

and the complete beta function B(a, b) is defined as B{a,b) = jt“—l (1-£)""dt , whete a>0 and >0,
The factotial a, whete a Is a positive mteger number is denoted by a! and is defined as
al=ala~1)---1. We have I'(a+1)=al'(a), and I'(@)=(a—-1)!, the factorial (@a—1), whereas g is a
positive real number, and B(a,b) = ('@ +5))"'T'(@)I'(h). Finally, the standard beta’ distribution, with

parameters @ >0 and b >0, has probability density function (p.df) p(f;a,b) = {B(a,b)}—lt“””l (1-0°7,
whete £ €(0,]). See Balakrishnan and Nevzorov (2003), chapters 16 and 20. '



The beta-binomial random variable (rv.) Y, with parame:ters m, a>0 and b>0, has p d.f.
Dn(k;a,b) = Pr[Y = k], that is defined as

RCTOR | (IZ) (1= 0" {Bla, b e (1~ 1) d

_ (IZJ { B(a, b)}—-l ]v[tm'k-‘] a- t)bﬂn—k—l dt, : (3

0

for every k=0,1,...,m. In particular, we have p, (k;a,b)= (]Z]{B(a,b)}wl Bla+k,b+m—k), for every

k== 0,1,...,1?:2 . We also have me‘(k;a,b) =1,with p, (k;a,6)> 0, for every k= 0,L...,m
k=0 :

We can rewtite the definition (3) as

pakab)={B@b)}" [p, st 0-0""dr,
i

' whete pn(kit) = {’Z]tk(l —£)"* is the binomial p.d.f, with (]:] = (k!(m - k) %)"] m!, patameters m and
t, te[0,1], for every k=0,1,...,m. Moments of the beta-binomial r.v; Y, are obtained by integrating the
moments of the binomial p.df p,(k;8), f€[0l], k=0,,...,m, that are functions of ¢, t<[0,l],
through the definition (3) of the beta-binotnial p.df p,(ka,b)y, k=0,1,...,m .

~ In particulat, we recall that the first three moments about the origin, 7]1',‘ 7,, and 7;, of the
binomial p.df p,(kf), with values k=0l...,m, are m=mt, 1, =mm—-Dt* +mt, and
17, = m(m ~D(m— 2" +3m(m - D' +mt, where t€[0,]]. The first two moments about the origin,
’ A{a,b)= 2 and A,(a,b) = A,, of the beta p.df. p(t;a,b), with values £ €[0,1], ate -

A (a,b) ={B(a,b)} ' B(a+1,b)
=(a+b)'a, _ | (4)

A(ab)={(a+b)a+b+D} " a(a+1), : 5)
and the third moment about the origin 4] is

;L;='{(a+b)(a+b+1)(a4«b+2)}“a(a~;~1)(a+2). ' N (5

. See Balakrishnan and Nevzorov (2003), chapters 5 and 16, and Johnson, Kemp and Kotz (2005), chapter
3. Finally, the first three moments about the otigin, £, f,, and 4, of the beta-binomial p.d.f.
Pk a,b), with values k=0,1,...,m, are



ty = miy(a,b),

4y = m(m =) (a,b) + m,(@,b),

ty = m(m —1)(m = )4, +3m(m - 1A, (a,.b) +mA (a,b).

“The vasiance of the beta-binomial p.d.£. Pa(k;a,b), with values k=0,L,...,m, is

Hy=(a+b)Ha+b+1) " mab(m+a+b).

ﬁrom the third cesitral ﬁ.}ome.:nt Hy = iy =3y + 2(#1 )3, it is -Sem that the beta-bmonﬁal p.df.
pn(k;a,b), with values k = 0.1,....m, is negatively skewed for '

b %abz +3mb* +2m25 <a® +ab+3ma® +2m'a,
and is positively skewed for

b’ +ab® +3mb” + 2m25 >a +a’b+3ma’ +2m'a.

BExamples of the beta-binomial p.df. p,(k;a,0), values k£ =0,1,...,m, are plotted in figure 1, for
different values of the parameters @ and b, with 2 reasonable m = 20. | o
_ The values of the parameters @ and b, in the moments A, (@,b) and A,(a,b) , given by (4) and
" (5), respectively, of the beta p.d.f. p'(t;a,b) , with values # € (0,1), that yield a conveniently small quantity

A (a,b)~ A, (a,b) = {(a+b)a+b+1)} " ab, @

can be regarded as constructive. More precisely, constructive values of @ and b in (7) can directly help to
improve the numeérical performance of the Bernstein-type approxitdations that we are going to introduce
in section 4. Constructive values of @ and b in (7) can lower their unifosm convergence rates, as m —» 0.

The quantity 4 (a,6)—4,(a,b) given by (7) does not admit a minimizer, for ¢ >0 and 5> 0.
For further details and descriptions, see sections 6 and 7.

4. BERNSTEIN-TYPE APPROXIMATIONS

4.1. Bernstein-type approximations

Let g be a bounded and real-valued function defined on the closed interval D R'. The
Bemmnstein-type approximation C%(g;x,a,b) of order m for the function g(x) is defined as

1

€O (g3, 0,8) = B@n}" | ig(m‘s(m"lk*tﬁx)[ﬂf”k”l (=", - ®
ul}

0 k
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Figure 1: some beta-binomial probability distribution functions pm (k;a,by, for £=0,,...,m,
m=20,where a=15, a=2.5, a=10,and b=1.5, b=2.5, b=10.
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where 5> ~1/2 is fixed, m is a positive integer number, and x € D < R'. Properties of the Bernstein-
type approximations C(g;x,a,b) , given by (8), x € D, are outlined in Appendix 8.1.
If g(x) is continubus on x € D, whete §>-1/2, then C,{:)(g;x,a,b) -» g(x}, as m-> 0,

uniformly at any poiat x € D. In Appendix 8.2, we provide a proof of this uniform convergence. An
alternative proof that applies uniform convergence of integral operators can be found in Appendix 8.4.

Let g be a bounded and real-valued funcﬁqn defined on the closed interval D < RY. The
Bernstein-type approximation C(g;%,a,8) of order m for the function g(x) is defined as
_ ‘ . my (mllk )+ X,
C9(g;x,a,b) = {B(a,b)} j jz | :
=0 &, vo = (™ ‘
’ Mg (m_q k, qu)fxq

m m . bl e m . e v
[ EJ( Q}tlaﬂc,—l(]_ti)nmb—k,-i “.tq kg i(l_tq) R idfl "'dl‘q, ) (9) |
k, k, e

whete §>1/2 is fixed, m= (ml,...,m ) are positive integer numbets, m = Zm,. is the total degree,
=l

and x € D¢ RY. Properties of the Bemstein-type approxlmations C;f}(g;x,a,b) , given by (9}, xeD,
are outlined in Appendix 8.1. '

If g(x) is contindods on x€D}, Whem S>w1/2 then C(‘)(g,x,a,b)ég(x) as m—» o,
uniformly at any ¢ -dimensional point x € D. In Appendix 8.2, we provide a proof of this uniform

convergence. An alternative proof that apphes uniform convergetice of integral operators can be found in
Appendix 8.4,

4.2. Degrees of approximation

Let @(8) be the modulus of continuity of the teal-valued function g, for every &> 0. The
modulus of continuity @{(d) of the function g(x), where xe[0,]], is defined as the maximum of
1 g(x,)— g(x)'l , for !xG —xt <&, where x,,x €[0,]1]. If the function g is continuous, then () — 0, as
o—0.

Setting & =m™'?,

for every xé{O 1], it can be shown that the Berﬂsteinftypé apptoximation
C® (g;x,a,b), given by (8), has degree of approxlmauon

|c,§:>(g;x,a,b>—g(x>|s[1+m“’m“““*{zq(a b= Aab)]]afr?). (10

where the quantity /11 {a,b)— ﬂ;(a,b) is given by (7). See Appendix 8.3.

12 : '
We let | X |= [Z xfj , where X €[0,1]%. The modulus of continuity @(J) of the teal-valued

i=1

function g(x), x€[0,]}7, for ‘cvery & >0, is defined as the maximum of ’g(xo)—.g

, for

X, -X|< &, where x,,x €[0,1]7. If the function g is continuous, then @{(d)—>0,as & —> 0.
5 0 £



~ Setting & =m? | for every x&[0,1]7, it can be shown that the multivariate Betnstein-type
approximation C%(g;x,a,b) , given by (9), has degree of approximation

|CO (g x.a8) g(x)l‘{lm [Zm “J{Ma b)-A(a, b)ﬂ o), BNCE)

i=]
q . R . .
whete m = Zm, , and the quantity 4,(a,b) —4,(a,b) is given by (7). See Appendix 8.3.
: =1 . '

4.3. A compasison

For a convenient value of the approximation coefﬂcieﬁt s, the Betnstein-type approximatons
c® (g;x, d,b) and CY(g;x,a,b), given by (8) and (9), where §>-1/2, can typically outperform the
Bernstein polynomials B (g; x) and B (g;x) , givenn by (1) and (2), for any Function g to approximate,
for every x € [0 1] and X € [0 1] , tespectively.

Choosing a value of s, whete §>-1/2, can only mochfy the coefficients in the degrees of
approximation (10} and (11) without affecting theit fmodulus of continuity w( ”2’) for any fixed

o= Zm Large vaiucs of 5 do not bring any advantage with typical examples of appkcatlon for the
=1
Betnstein-type approx}matlons C ) (g,x a,b) and CY(g;x,a,b), defined by (8) and (9), respectively,

whete §>—-1/2, x€[0,1] and xe 10,174 Convexgence to unity of the coefficients that distinguish the
degrees of approximation (10) and (11) is fast, as § increases.

In Figure 2, we compare the differences B, (g;x)~ g{(x) with C(g;x,a,b)~ g(x), where the
Bernstein polynomial B, {g;x) is given by (1), the Betnstein-type appmmmauon C(gix,a,b) is given

by (8), and the function g is defined as g(x) = x* +x* +x, aad g(x) = x> +x, for x € [0.25,0.75}, whete
m=4, a=1.5 and b=10, and s =-0.1,-0.005,0.05,0.5,1.5. We also compare the difference

B (g:x)—g(x) with C¥(g;%,a,b) — g(x) , where the Bemstcm polynomial B, (g;X) is given by (2), the

Bernstein-type  approximation  C{(g;x,a b)) s given by (9), and the function g is

g(x)= (xz—«iwl)"I(Jc1 +1), for x=(x,x,)", xe[0250.75], x,e€[0.45,0.85], wherc; m=m,=4,

a=15, b=10, and s= 0. 1,—0.005,0.05,0.5,1.5. The values m=4 and m, =m, =4 are very small,

computationally and numercally. In any case, the numerical performances of the Bermstein-type

approximations CY(g;x,a,b), x€[0.25,0.75], and C¥(g;x,4,0), x=(x,%,)", x €[0.250.75],

x, €[0.45,0.85], ate always very cffective.

5. ESTIMATION OF SMOOTH FUNCTIONS OF MEANS

5.1, Bernstein-type estitators

The Bernstein-type approximations C(g;x,a,6) and CP(g;x,a,b), given by (8) and (9), where
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Figure 2: Differences B, (g;x)— g(x), (hatched line), and C(g;x,a,6)— g(x), (solid line), for
the smooth function g(x)=x" +x° +x, where x € [0.25,0.75], where m=4, a=1.5,and =10, with
s=—0.1 (the wotst performance), s =-0.005,0.05,0.5, and s=1.5 (the best performancé) (panel (1)).
Differences B, (g;x)— g(x), (hatched line), and C®(g;x,a,b)~g(x), (solid line), for g(x)=x"+x,
whete x € [0.25,0,75], whete m=4, a=1.5 and b=10, with s=-0.1 (the worst performance),
s =-0.005,0.05,0.5, and s=1.5 (the best petformance) (panel (). The difference B, (g;X)}~ g(x),
(hatched line), and C¥(g;x,a,6) ~ g(x), (solid line), for g(x) = (x, +1)7(x, +1), where x, €{0.25,0.75],
x, €[0.45,0.85], where m =m, =4, a=1.5, and h=10, with s=-0.1 (the worst performance),
s =-0.005,0.05,0.5, and 5 =1.5 (the best petformance) (panel (iii)).



xeDg R' and xe D RY, can be used for estimating smooth functions of the population means in
the statistical inference on a random sample of 7 independent and identically distributed (iid.)
observations.

Let X be a univariate random variable with values x & D, disgibution ﬂmction F, and finite
mean g = E[X]. We want to estimate a population characteristic 8 = g(1), where g is 2 smooth function

"g:D > R'. The natutal estitmator of @ is 6= g(x) whete X =n" Z X, is the sample thean, caleulated
=1

on a random sample of # iid observations X, j=1,...,n, of X. Ax; alternatlve estimator of @ = g(,u)

is the Bernstein-type estitnator C ,Ef}(g;f,a,b) .

1

CY(g;%, ab) B@yny” | i gl (m~k~ z) )[’:sz"‘_a’—z)’{’“’f-k-‘ dt . (12)
0

k=0

whete §>-1/2 is fixed. The Bgmstem—type estimator (12) follows from the definition (8) of
CY(g;x,a;b), s >-1/2, by substituting x € D with the sample mean X, where ¥ fangesin D.

Let X be a g-vatiate random vatiable with values x €D , where X =(X . § qﬂ)r , with
distribution function F', and finite g -variate mean U= E[Xj s =0, ,uq)T. We want to estitnate a

population characteristic 6 = g(u), where g:D—> R'. The natural estimator of @ is 6= g(X), whete
X=(%,....%, )T is the g -variate sample mean on a random sample of # iid. g-vatate observations X,
i=L...,n,of X, X, = n"lzX y» i=L..,q. An alternative estimator of @ = g(u) is the multivatiate

L]
Bemsteinhtypc estimator Cfn )(g,i,a,b) ,

' ' Lol mom mrs(m;;kl s )‘+ X
CO(gixab)=Babl” [ [X - g L
| R s R

myy L m | + —\ m, k-
[ ‘}( q}t;’*f‘"l(lwr,)"“""""i“l-~-t-;’ A=) (13).
k)&, _

where §>-1/2 is fixed. The multivariate Bernstein-type estimator (13) follows the definition (9) of
CO(g;x,a,0), s>-1/2, by substituting x € ) with the sample mean X, where X rangesin D .

5.2. Otders of error in probability of the Bernstein-type estimators

We know that ¥ = 4+ 0, (n"m ), as 1 —> 0. We also know that

2(®) = g(1)+0,[m"?),



as 1 —> 0. It is shown that the Bernstein-type estimator C(g;%,a,b), given by (12), for s >~1/2,is a

consistent estimator of g(4),as m — « and 7 —» . In particulat, it is shown that

CE (g% a,0) = g(@) + Olm ™7 )+ 0, (n™?), : | (14) -

for s >-1/2,as m > and n—> . See Appendix 8.5. |
We know that X= ,a+0 ( U2), where X, = 4, +Op(n—”2), i=l...,q, a8 n—>o0. We also
know that ‘

g(®) =g(w)+0,(n""?),

as 71— . It is shown that the multivariate Bernstein-type estimator Cf: Ng:%,a,b), given by (13), where
m= (m,,...,mq)T, for s >—1/2,is a consistent estimator of g(y),as m, —> w0, i=1...,¢,and n > w0,
In particular, it is shown that

COgiFad) =g+ 3 0™+ 0,(7), .18
. i=1 | ’

for s>-1/2,as m, >0 i=1..,q,and n— w . Sece Appendix 8.5.
5.3. Asymptotic normality of Besnstein-type estimators

The Betnstein-type estimator C(g;%,a,b) is defined by (12), whete §>-1/2, and m is a

172

ositive integer. We denote by o the as totic variance of # X),as n—>w. Thatis,
p 2 ¥ ympt g :

ﬁwwwﬁd@>m%

where g'(x) = (afx) dg(x), and x € D. The distribution of the Bernstein- -type estimator C¥ )(g,x a,b)
s asymptotically notrial,

P CO (g;%,a,b) - g(1) } —L> N(0,6%) , (16)

for s >—1/2,as m~» 0 and n—> . See Appendix 8.6.

The Bemstein-type estimator C(g;%,a,0) is defined by (13), whete s>-1/2, and
mz(ml,...,mq)T ate positive integers. We denote by o’ the asymptotic vardance of #'°g(X), as
# —» o0, That is,

Rl —ZZ(ax) 0g(X|,...s X )Ix;#(@xj)'"l6g(x1,...,xj,...,xq)

=] e

kx—mwfwﬂ

x=g

0



The distribution of the Bernstein-type estimator C(g;%,a,b) is asymptotically normal,
A {CP (g% a,b) - g1 | —N(0,07), (1)

for s>-1/2, as m, »w, i=l..,q,and n->w. See Appendix 8.6. .

6. SIMULATION STUDY

Following subsection 4.3, we report on a stmall Monte Catlo experiment concerrﬁng with the
empirical behaviour of the Bernstein-type estimators C “(g;%,a,b) and C¥(g;%,a,b), given by (12)

m

and (13). We applied the Betnstein-type estimators C(g;%;a,b) and CP(g;%,a,b), given by (12) and

m

{13), to the approximatiof of the smooth functions of means g(F) =% +%¥° +%, g(X) =% +X, whete

x=n"Y X, and g(X)=(%, +D)7(F +1), where X=(&,,%,)", ¥, =n") X, i=12. Random
j=1 ‘ : =
samples of different size n, of Lid. observations, were always drawn from the univariate folded normal

distribution | N(0,))] and from the bivariate folded normal distribution with independent marginals

] N(O,D l . We always considered the values @ =1.5 and b =10. We denote by ¢ both the Monte Catlo

vatiance of the chstein—typé estimator CY(g;%,a,b), given by (12}, and the Monte Carlo variance of

the Bernstein-type estitnator Co(g;X,a,8) , given by (13). |
From the definition (12) of C ,{,f) (g;%,a,b),we have the Befnsteinwtype estimator

CORE + 3 +;%,a,b) = ¥ + 72 + T +m > (35 +1){ £ (@,5) ~ Z,(a, b))}
+m 220, =32, (a,5) + 4 (a,b)},

whete § > —1/2, and the moments 4 (a,b) ,A,(a,b), and A, are given by (4); (5), and (G), respectively.
In Figure 3, we show the empirical behaviour of the difference
COE +X 4+ X Ea,b) ~X ~F X,

for m=3,4,4,5, 5=05,0.50.6,2, and the sample sizes n=4,6,10,16. We had the Monte Catlo
vatiances &, =1.844476, & =1.145010, &), = 0.634065, and &}, = 0.581082.
From the definition (12) of C%(g;¥,a,5), we have the Bernstein-type estimator

COE* +%:%,a,0) = ¥ + &+ m ™ {1 (a,0) - A, (a,b)},
where 5> —1/2, and the quantity 4,(a,b) ~ 2,(a,b) is given by (7). We have a constant difference

CO(%* +%;X%,a,b)~ %~ X,
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Figure 3: Differences C,{,f}(fs +X 4% %,0,h) % ~%?~%, where a=1.5 and b=10, for
random samples of size #, from the folded normal distribution; s =0.5, m=3, and n =4, in panel (),
$=0.5, m=4,and n=06, in panel (i), s=0.6, m=4, and n=10, in panel (if), s=2, m=5, and

n =16, in panel (iv).
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b=10, for random samples of size #n, from the bivariate folded normal distdbution; §=0.5 ,-
m =m,=3, and n=4, in panel (), s=0.5, m=m, =4, and n=6, in panel (), s=0.6,
my =m, =4, and n=10,inpanel (itl), s =2, m, =m, =5, and n =16, in panel ().
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with this exatmple. We had the value C¥(¥? +X;%,a,0)~%* ~X =0.0115%4, for m=3, 5=0.5, and
the sample size n=4, CO(X?+%;¥,a,6)~%> —% =0.006522, for m=4, s=05, and n=6,
CO(F2 + 33 %,0,6) —F ~ T = 0.004943 , for m=4, 5=0.6, and n=10, C(¥* + ¥;%,a,6) - ¥* ~ %
=0.000339, for m=5, s=2,and n=16. |
From the definition (13) of C, ) (g:%,a,b), in order to approximate the integral in the Bernstein-

type estimator C (%, + 1) (%, +1)i%,4,b), we obtained CO((%, + )™ +1);%,a,b),

m

CO(E, 17 G+ D% ab)=(E +D7 G +D)
+m (% + 7@ + DA (@h) - L @b,

where §>-1/2, and the quantity )ﬁl_(a', b) -~ ﬂ,'z (a, b) is givcn by (7), such that
EO(E, + 17 @ +1:%a,6) = CO (&, +1)7 & + ;% a,b)+ O(m;™2),

as my ~>© and m, —> 0. The Bernstein-type estimator 5;5) ((f2 —I-.I)'1 (x, +11%, a,b) was obtained by

calculating the integral in Cf,f},(()_cz +D7(F, +1);3E,a,b) with the three-term Taylor expansion of the

denominatot (X, + 1), See Wong (2001), chapter 5, for further details about this procedure. '
In Figure 4, we show the empirical behaviour of the difference

EO(E, +)7 G+ 1% a,b)- (5 +)7 G +D),

" for my = m2 =34,4,5, 5= 0 5,0.5,0.6,2, and the sample sizes 7= 4,6,10,16. We had the Monte Catlo
vatiances &2 = 0,050593, 7 = 0.031106, &7, = 0.024603, and & = 0.015765.

7. CONCLUDING REMARKS

1). The quantity A (a,b) — A,(a,b), given by (7), is crucial for the numerical perfosmance of the univatiate
Betnstein-type apptoximations C% (g;x,a,b) , defined as (8), where s >—1/2, and x € D < R', and for
the numerical performance of the multivariate Bernstein- typc apprommauom C’,Ef '(g;%,a,b), defined as
(9), where s >-1/2,and xe D < R*.

_ The function 4 (a,b)~ /12(0 b), given by (7) does not admit a minimizer, for a >0 and 5> 0.
Sce Chong and Zak (1996), chapter 6.

- Space curves (a(£),b(),£), where f & E and E C R', can be easily deawn in ordet to determine
specific degrees of approximation. See Montiel and Ros (2005), chapter 1.

In Figure 5, for the function A(a,b)~4,(a,b), given by (7), we plot the slices
A(0.75,b) - A4,(0.75,b), A(1 5,b)— A, (1.5,b), and A,(3.5,b) — 2,(3.5,b) , where 0.01 <5 <40.5. The
sice A, (1.5,6) = A,(1.5,6), 0.01<h<40.5, refers to the simulation parameters used in section 6. .
Specifically, in section 6, we used the value 4, (1.5,10) ~ 4, (1.5,10) = 0.104348.

W‘%‘—:&.
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Figure 5: slices of the function A(a,b)— A, (a,b), given by (7), where a>0, and b>0. Slice
4,(0.75,6) — 4,(0.75,8), where 0.01<b<40.5, in panel (i), slice A,(1.5,6)~A,(1.5,b), where
0.01 <5 <40.5, in panel (ii), slice 4,(3.5,6) — 4,(3.5,8) , where 0.01 < b < 40.5, in panel (ii).



The degrees (10) and (11) of approxitation of the Bermstein-type approximations Cy (g;%,d,b)

and CY(g;x,a,b), given by (8) and (9), respectively, where s >-1/2, xe D¢ R',and xeDg R,
ate better than the degrees of approximation of the Bernstein-type approximations, that are proposed in
Pallini (2005), for values of @ and b such that 4 (a;b) - 4,(a,b) <1/4.

2). More efficient results for the Betnstein-type approximations C (“)(g;x,a,b) and Cg)(ggx,a,b),
defined as (8) and (9), respectively, where s>-1/2, xe D¢ R', and x € D ¢ RY, can be obtained by

over—skewmg the beta p.d.f. beta(a,b), with the moments 2 (a,b) and A,(a,b), given by (4) and (5).

We can ovet-skew the beta p.d.f. befa(a,b), by an additional patameter 7, with values 7> 0, by
determining the beta p.d.f. beta(a,b7r). The beta p.df. beta(a,bt) is negatively skewed, for 7 < b7a,
and is positively skewed, for 7 >57a. |
' From the definition (7) of A(a,0)~ A,(a,b) , under the condition a’t +ar +b°r - b1 <a” +a,

it is seen that the value of A(a,br) 2,(a,b7) is smaller then the value of A(a,b)~ 2, (a,b).
3}. We recall that the most special cases of the beta p.d.f. beta(a,b) are the arcsine dzsmbutlon, the power
distzibution and the uniform distribution. See Balakrishnan and Nevzorov (2003), chapter 16.

4). Rosenberg (1967) studies an application of the multivariate Bernstein polynomial B, (g;x), given by

(2), to the Monte Carlo evaluation of an integral. The same application can be organized for the
multivatiate Betnstein-type approximation in Pallini (2005) and for the tultivariate Bernstein-type

approximation C¥(g;x,a,b), given by (9), whete s > —1/2, m = (m,,...,mq)T, and xe D RY.
Most importantly, straightforward vetsions of the Bernstein-type approximations. C (g3 x,a,5)

Cand CYP(g;x,a,b), given by (8) and (9), respectively, where s>~1/2, xe D, xeD, are both
multivatiate approximations for functions and approximate multivariate integrals of funcljons. Focussing
on Cf:) (g:x,a,b), given by (9), whete s> -1/2, x €D, let us suppose that we ate interested in the

evaluation of an integral J-D g(x)dx, where D < R?. In particular, we can statt from an approximate

integration rule of the form

mims(mlwlkl _ti)+ X,
CO (R x,a,b) = {B(a,b)}™ J’ J Z th

0 0k k= —sf -1 _)
m, mqkq I, }+x,

m m - k1 g
-{kjj_”(kq) rfu»klml (1 ~1, )m,+bwk1»1 --'t:+kq 1(1_tq)mq+‘r’ ke Edtl ,..dtq’
1 q

where 5 >—1/2, B :{0,1]% = RY, and then apply a procedute for a more efficient integration rule. See
Wong (2001), and Hanselman and Litflefield (2005), chapter 24.

5). In the Besnstéin-type approximations C7(g;x,a,b) and CY(g;x,a,b), given by (8) and (9),
respectively, where 5> ~1/2, x e D and x € D, the linear kernels m™ (m"lk wt) +x, the linear kernels
m (m Iy wx) +x and m; (m,"iv,. —x,.)+x,. cat be substituted by nonlinear kernels, whete

k=01...,m, k =0L...,m,i=1..,q9,and xe D, X:m"*(xl,...,xq)T € D, respectively.



6). The Betnstein-type apprdximation 'AC ©)(g;%,a,b), given by (9), where s>-1/2, and xeD g R?,
can be generalized by usmg a different appromaﬂon coefficient for each component. That is, we can use
$=(8;5.0055, Y. in the Betnstein-type approximation C% (g,x a,b), where xeDg RY.- Anothet

genci:ah?atzon of the Bernstein-type approximation C ) (g;x,a,b), given by (9), where xeDg Rq

be based on g different beta-binomial p.df’s, p,(kia,,b;), that can be defined from (3), for every
i=L...,q | ,

7). Vatiants of the Bernstein polynomials that are discussed and studied in DeVore and Lorentz (1993),
chapter 10, can also be regarded as extensions to the use of the binomial p.d.f. in Bernstein-like

approxitnations. Extensions to the beta-binomial pdf. p,(k;ab), given by (3), where k=0,,...,m,are
discussed and studied in Wilcox (1981).

8. APPENDIX
8.1. Basic propertics of the Betnstein-type approximations (8) and (9)

The Bemstein—typé approximations C',Ef)(g; x,a,b) and C¥(g;x,a,b), given by (8).and (9),
respectively, where s > —1/2, xe D and x €D, respectively, ate linear positive operators. Let 7, and ¥,
be finite constants. Let g, g,, and g, be functions, g(x), g,(x), and g,(x), x&€ D. We have

COG, +1,8%,a.8) =7, + 1,CP(gsxn,a,b),
C g, + g,;%,a,b) = C(s)(gi;x,a,b) +C¥(g,1x,a,b),
xeD. If g(x) s gé_(x), forall x € D, we have
| C(g,55,0,5) £ CO (g %,,b),

x € D. Multivatiate vetsions of these pmpcrﬂes hold for C¥(g;x,a b) given by (9), where g(x),
s>-1/2,and xeD.

8.2. Uniform convergence of the Bemstein-type apptoximations (8) and (9)

The uniform nomm ||g| of the fanction. g(x), where x€ D, is defined as lgl= max |.g(_x)'. The

Bernstein-type approximation C(g;x,a,b), where x € D, is given by (8). We want to show that, given

a constant & > 0, there exists a positive integer m,, such that

CO(g;n,a.b)-g®)|<e, (18)

forevery xe D. ,
For evety x € D, the Bemstein-type approximation CY(Lx,a,b) is
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m

CPUxab)= Y (’Z) =0y {Bla, b)) 1 (10" dt

={Bab)}" [+ a-p"d
-1, | | (19

We define the function g(x) as u(x)=1x, and the function f4,(x) as 4,(x)= x*. The Betnstein-type
appromauon Cy (x),x a,b) is

k=0~

o awimad)= [ 3o —¢)+x}(',:}“ (-1 Ba b} e -0 d
- B B’ [xea-0""dr
- 0 @)

The Bernstein-type approximation C& (,Ld2 (x);x,a,b) is

CO (4, (x);%,a,b0) = ] i{ ‘k—z)+ xf (kj tk(i—‘z-)’"“" {Bla,)} 1" (1~ )"" it

o [l 0o
=m {1‘1(“, b) —.ﬂ;(a,b)}ﬁu X, o o)

where the quantity 2, (a,6) — 2, (a,b) is given by (7).

Suppose that l i= M . We take x, € D. We havé

_OM < g(x,)-g(x) <2M, | | - @
where X,,x € D. The function g is continuous; given & > 0, there ekists 2 constant & > O,. such that

e < gl gD <5, - o @
for ixo - x| <&, and xy,x € D. From (22) and (23), it follows that

—-2M < g(x)—gx)<g +2M,

| and then



O (%, — %) < glx) ~ g(%) S, + AME (xy - 3, e

for x,x € D. In fact, if [%,—x|< &, (22) implies (24), xp,x € D If | x, —x[|2 5, then 67 (x, —x)* 21
and (23) imply (24), x,,x € D . Following Appendix 8.1, (24) becomes

g, = 2MECO (%, -’z b)<C¥(g;x,0,6)~ g()
Sg+ 2M5“2C{°}((x0 - x)*; x4, b) ' (25)

for xpxeD. We observe that (x,—x)" =x; —2x,x+x°, %,X€D. Hence, the Bemnstcin-type

apptoximations Ct(1;x,a,b) , C {1, (x,);x,a,b), and Cu, (x,);%,a,b), that can be obtamcd as (19),
(20) and (21), imply that

9, —x)z;x,a,b)‘ C(*'}(xg;x a,b)~2xCY (x;%,4,5) +x2C(S)(1 x,a,b)
"2“{21(6117)) A, (a, b)} +x*-2x" +x° _
= mmzwl {ﬂq (a,b)m‘/%z (anb)}: . : (26>

for x € D, whete the quantity /'{1 (a, b)‘—— /?,'z(a,b) is given by (7). We have
CO((x, - 1) x,0,8)= Olm ™),
asm—>o, xel. Fiﬂaﬂy,we have

CO (g%, a,b) - g()| < 6, +2M8 > m {1, (a,5)~ Ay (a,B)},

x € D, whete the quantity A (a,b) - 2, (a,b) is given by (7). Setting &, = &/2, for any

>[4 Aa)- A )],

for s>— 1/ 2, wherc: thf: quantity A (a,b)— 4,(a,b) is given by (7), the uniform convergence (18) is
proved.
The condition s >-1/2 is required for the  uniform convergence. The convergence

CW(g:x,a,b) - g(x), for s >—1/2, is uniform, at any point of continvity x€ D, as m —» ©, in the
sense that the upper bound (26) for the uniform norm does not dependon x, xe D). -

The multivatiate Bernstein-type approzimation CY(g;x,a,0), where s>-1/2, and xeD, is.
given by (9). We observe that g is fixed and does not depend on m . Considering the uniform notmn u g“

of the function g(x), x €D, defined as ng=

& > 0, there exist positive integers my = (#y;,...,M, ) ", such that

|C9 (gix.a,b)-g(x)| <z, . @7)

P

b



for every xe D.
For every X € D, the multivariate Bemstem—typc approximation C¥(1;x, a ,b) is

C!{;‘) (I’ Xga,b) Z i: [ ] lkg (1 “"11 )m;—k: {B(d,b)} ~1 a1 (1 Il)bwl

9 k=0 k=0

) Ic,‘, mq.—.’cq ] g —
---[k;’]rq (=) {Bla, &)} " 10 (A1 )0 ity

=1, | (28)

where s > ~1/2. We definc the functions y;(x} Z x, and (X)) = Z x; . The ‘muitiva;iate Betnstein-

type apprommamon C O, (x);%, 9, b) is

CO(u(x);x,a,b) = f X, . , | " (29)

ek

and the multivariate Bemsteinmtypc approximation cw (yz (X);X,a,b) is

COu, (x);x,a,b) = [}qj 2! J{Z;(a,b) - ﬂ;(a,b)}+ fxf . | O (30)

where the quantity 4,(a,b)— 4,(a,b) is given by (7).
Suppose that ”g” =M . We take %, = (XOi,.‘.,xoq)_T, where X, € D. We observe that "

q .
(xo—x])’ = Z (xgr +x7 = zxof'x:‘)’

i=1

X, X € D . The uniform convergence (27) follows from the result

Ci:}(ﬂ Xo '.X!)z;}.(,a,b) i 0( 2 1)

fa=l

X, Xx€D,as m;, > o, for §>-1/2, where i=1,...,9, XO,XGD' Under the condition §>—-1/2, the

convergence CU(g; x,a,b) - g(x) is uniform at any pomt of continuity x €D, as m, ~» 0 | whete
i=1,.

8.3. Degrees of approximation (10) and (11)
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For every 8 > 0, we denote by A(x,,x;8) the masimumn integer less than or equalto § flixﬁ

where X,,x €[0,1]. We tecall the definition of modulus of continuity @(5), where & > 0. We have -

lg(xa)mg(xnSa)@{w(xo;x;a)},

Xy, X € [0 1. :
The Bernstem—type a@promaﬂon CY(g;x,a,b) is g1ven by (8), where §>-1/2, and x €[0,1].
Putting x, = m “( 1k_~— t)-i— x, for every k =0,1,...,m, then, we have that '

IC(‘)(g,x a,b) g(x)l { B(a,b)}" _[Z!g( (m""]v—z)+x)—g(x)1[r:Jt*”’""l(iwt)””"k“dt

o k=0

L

< (8 { Bla, b)}"“‘ {14 Axy,%:8) } (’Z} 1 (1= )Pty

k=0

=

Oty D -

bl
(=]

<) {Ban) " [Y {1+ 57 m~*(m ke~ }) | } ’ZJ £7H1 (] )Pl gy

k]

) 1
<a)(§){B(a b) 1I {}+5-2 ~m25w«2(k__mt;)g}- i:}tawwl(}mt)b.,.”,_k_ldt’
. G

O

x €[0,1]. It follows that
|C¥(gix.a,)~ g(x)i < 0(5) [1+5~2 1( 1 (a,8) - b)),

x €[0,1]. Setting & = m™"'? | we finally have the degtee of approximation (10).
For every § > 0, we denote by A(x,,X;8) the maxitoum integer less than ot equal to & ‘IIXO - X%

3

where ‘Xo ——Xi ﬂ(i(xm —-xr.)z} ,and X,,X €[0,1]7. We have
3 :

|g(%,) ~ g(x)| < () {1+ Ax,,x;) },

where @(8) is the modulus of continuity, § > 0, and x,,x €[0,1]7.
The multivatiate Betnstein-type approximation C%(g;X,a,0) is given by (9), whete s > —1/2, and
x €[0,11?. We have :

m;s(m;qk] ”ti)”i”xl Xy

' Iomy w
CO g at)- 59| (B} [ [ 33 lg f -g
. i+

O k] =0 k=0 ,..,5( -1 _ ) J
m,\m, rq tq +xq X

2|



fm m iy - ettty ey ~ an . gk, =
(Iql}'(k:}tg i 1(1_f{)f k 1.. k, 1(} r)b k Edfl"'dtq

"

< (8) { Bla,b)f j j}: ij 1+;b(x0,x 5)}

o k=0

g My ) ack-1 ek gkt b, k-1 ‘

" x€[0,1]7. Thus, we have

lcg)(g;x’a’b) .—g(x)i s (o) |:I +5~2i m;zsw} {’l‘l(aab) _’T’z(a::b)}} ’

x €[0,1}7. Setting & =m™ Wherc m= Z m; , we ﬁnally have the degtee of approximation (11).
: s

8.4. Uniform convergence of integral operators

We suppose that g(x)#0, for every x€ D. We can define the Betnstein-type approximation
C,(:) (g;x, a,b), given by (8), as the integral operatot

1 ’ | |
CP (g% ab) = [h,,x)g0)dt, | o
] |

with the kernel

.

b, (t,%) = {g(x)}" {Ba,b)}” g(m “(m flkl.a )+ x) ('Zj (I (] l{)bupm«wku-l. ’

k=0

where xe€ ). The definidon (31) is cquivalent to the problem of approximating"{ g®)} with
C¥(g;x,a,b), whete x € . We need that

[, x)dt 1, | o | (32)
¢ ' .

uniformly at any point of continuity x € D, as m —» o0, We also need that

[ 16,2 dt >0, . . (33)

where



E= {t:Im"*(m"%—?)+x——xi2§}={t :]m“”(m“‘k_l')]zgj,

for every k=0,1,...,m, and £ € (0,1), uni'formly at any point of continuity x € D, as m —> o0. Following

 Appendix 8.2, the umform convergence (32) can be shown by Taylor expanding’ g( ( k- t)+ x)
atound x, for every k=0,1,...,m, where t€(0,]), and xe D, and by supposing that the function

{g(x)}_i g''(x) can be bounded by a constant N, that does not depend on X, { (x)} g (X)) <N s -

where x € D. Focussing on the convergence in probability, it is seen that the condition (33) is fulﬁﬂed
Condition (33} also implies that

,{g 1hm(‘ta-x)ig(t)df —'")O’

uniformly at any point of continuity x € [, as m —» 0. Fimﬂly, we let

j 1 B G, xX)|dt <N, <+, o o (34)

where N, does not depend on x, and xeD. Under (32) and (33), and (34), the convetgence

CY¥(g;x,a,b) = g(x), for §>~1/2, can be shown to be uniform, at any point of continuity x € D, as
m —> o (cf. DeVore and Lorentz (1993), chapter 1).

We recall that the Bernstein-type approximation CY¥(g:%,a,b) is defined by (9), whete xe D,
Similatly, following Appendix 8.2, we can show uniform convergence of the integral operator

0

11 '
CY(gix,a,b) = j"'jhml(t1=x1)"'hm,',(tq?xq)g(tl)""g(tr.r)dtl"'dfl?’
' ¢ ! .

where

. ) m ' -
by, (%) = { gD} (Bl o)™ glom* 'k, -1, )+ x,.)[k’ }z—;’“‘-“ (1—1,)tm1
k=0 i
for every i=1,...,q.
Under the condition § > — 1/ 2, we have the uniform convergence CI(:) (g;x,a,b) = g(x) at any
point of continuity X € D, as m, —> 0, where i =1,...,¢ (cf. DeVotre and Lotentz (1993), chapter 1).

8.5. Orders of error in probability in (14) and (15)

The Betnstein-type approximation C(g;¥,a,b) is given by (12), where s>-1/2. Let
g'(x)= (dx) “dg(x) and g"(x) = (dx) “d”g(x) be the first two derivatives of the function g(x), where
x €[0,1]. We recall that the quantity 4,(a,5) - 4,(a,b) is given by (7). By Taylox expanding the function
g( ( Tk~ t)+ x) around 1, for every k=10,1,...,m, we have

N
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C“)(g,x a,b) = g(,u)
+g (ﬂ)(x H)
+ 2—1 g"(wym {4 (a,6)— A, (a,b)}

g () - By
+

“m”g(ﬂ)‘FOp( ;r2)+0( w?.sl),‘ .

where §>—1/2,as m >0, and # >0, Order O(mhz_”““l)+ Op(n'”l) of ettor in probability in (14), as
m—>0, and 7 >0, is thus proved. o
The Betnstein-type apptoximation CY(g;X,a,b) is given by (13), where s>—1/2. By Taylor
expanding the function | R '

( k t1)+x§

—sf, -1
m,’ (mq k, —fq)-%x
around .’u::(p],...,pq)?', for evetry k =L..,m, i=l..,q, we can prove the order

q . : .

3 O )+ 0,(#772) of esror in probability in (15), s>~1/2, as m, -, where i=1,...,¢, and
fust . "
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8.6. Asymptotic notmality in (16) and (17)

Following (14), we have that n”z{C,{,f)(g;f,a,b)——g(ﬂ)}, where s>-1/2, is ésymptoﬁcaﬂy

equivalent to ﬂm{ (%)~ g(ﬂ)} » as m—»© and n—> . An application of the Central Limit Theorem

{cf. Sen and Singer (1993), chaptex 3) then shows the asymptotlc normality in (16), as m —> o, and
0>,

Following (15), we have #n'* {Céf}(g;"i, a,b) - g(ﬂ.)}, whete §>-1/2, m= (ml,.‘.,mq) , Is
asymptdticaliy equivalent to nlfz{g(wi) - g(,u)} , as m, >, where i=l...,q, and n—>®©. An
application of the Centtal Litit Theotem (cf. Sen and Singer (1993), chapter 3) then shows the asymptotic
normality in (17), as m, —> ©, where i=1,...,¢,and n—> 0.

Dipartimento di Statistica ¢ Maiemauca Applicata all'Economia ANDREA PALLI.NI
Universita di Pisa
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RIASSUNTO
Approssitmazioni del tipo di Bemstein utilizzando la disttibuzione beta-biromiale

Viene proposta e studiata una approssimazione del tipo di Bernstein utilizzando la distribuzione
beta-binomiale. Vengono studiate approssimazioni del tipo di Bernstein sia univariate che multivariate.

-
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Vengono studiate la convergenza uniforme ed il grado di approssitnazione. Vengono anche proposti ¢
studiati stimatori def tipo di Bernstein per funzioni regolari di medie nelia popolazione.

SUMMARY
Betastein-type approximations using the beta-binomial distribution
The Bernstein-type approximation using the beta-binomial distribution is proposed and studied.
Both univariate and multivariate Bernstein‘type approximations ate studied. The uniform convergence

and the degree of approgitmation are studied. The Bernstein-type estimators of smooth functions of
population means ate also proposed and studied.



