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Abstract

This paper examines the problem’ of relaxing the exclusion re-
striction for the evaluation of causal effects in experiments with non-
ignorable compliance to the assignments. The exclusion restriction is.a
relevant assumption for identifying causal effects by the nonparametric
instrumental variables technique, for which the template of a random-
ized experiment with imperfect compliance can represent a natural
parametric extension. However the full relaxation of the exclusion re-
striction yields likelihood functions characterized by the presence of
mixtures of distributions. This complicates a likelihood-based analysis
because it implies only partially identified models and more than one
maxtimum likelihood point. We consider the identifiability when the
cutcome distributions of various compliance statuses are in the same
class. Two-steps estimation procedures when the outcomes are nor--
mally distributed are also proposed. In these cases we do not need to
impose any extra assumptions compared to those usually adopted for
the instrumental variables technique. An economic application con-

~ cerning return to schooling concludes the paper.

“The author thanks the Dep. of Statistics and Applied Mathematics of the University
of Pisa, where he spent more than four yesrs in research and teaching actwmy, for allowing
the publication of this working paper,



1 Introduction

The exclusion restriction is crucial in the identification of treatment effects in
various causal inference methods. Historically, the assumption appeared in
the literature concerning the Instrumental Variables (IV henceforth) method
which has a long tradition m econometrics, and that has been applied in the
~ context of causal evaluation, for example, by Heckmann and Robb (1985),
Angrist (1990), Angrist and Krueger (1991), Kane and Rouse (1993), Card |
(1995), and more recently by Ichino and Winter-Ebmer (2004). In particular,
Angrist et al. (1996) showed that, under a suitable set of assumptions in-
cluding the exclusion restriction, the nonparametric IV method can identify
causal treatment effects for compliers, the individuals who would receive the
treatment only if assigned to it. Under a general approach to causal inference,
Jabeled the Rubin Causal Model by Holland (1986}, the exclusion restriction
requires that the instrimental variable has not a direct causal effect on the
outcome. In terms of a linear regression model this is equivalent to imposing
the absence of a probabilistic link between the instrumental variable and the
error term. .

The connection between a randomized experiment with imperfect com-
pliance and the IV model is in the fact that the former is a template that can
be adopted for the identification and estimation of treatment causal effects
also in nonexperimental situations. Regarding the IV model, the template
is that of a randomized experiment with imperfect compliance in the sense
that the particular instrumental variable adopted should have the role of a
random assignment for which the treatment does not necessarily comply.

Nonparametric bounds, on the average treatment effects of a random-
ized experiment with imperfect compliance, over the whole population have
been developed by Balke and Pearl (1997) under the exclusion restriction,
and supposing a binary treatment and a binary outcome. Their paper was
based on the general result of Manski (1990) for nonparametric bounds on
treatment effects.

Subsequently, research in causal inference turned from the nonparametric
instrumental variables method to parametric models. In particular with the
contribution of Imbens and Rubin (1997a) who introduced a suitable likeli-
‘hood function, and proposed also a weak version of the exclusion restriction
requiring that the assignment to treatment has to be unrelated to potential
outcomes but only for noncompliers, the individuals that would receive or
would not receive the treatment regardless of whether it is offered.
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In spite of its importance, the exclusion restriction can often be unre-
alistic in. practice; however relaxing the assumption is not straightforward
since it is directly related to the identifiability of the parametric models. A
example on a real data set {Imbens and Rubin, 1997a) shows that, with-
out the exclusion restriction and with a binary outcome, the model does
not have a uniqué maximum likelihood point, but rather a region of values
at which the likelihood function is maximized. Given this precedent, other
studies propose relaxing the assumption by relying on prior distributions
in a Bayesian framework and with a binary-outcome (Hirano et al., 2000),
or by introducing auxiliary information from pretreatment variables under
normally distributed outcomes (Jo, 2002). '

The cwrrent study explores a new option, where in a likelihood-based
context we fully relax the exclusion restriction without introducing extra in-
formation compared to the usual set of conditions adopted to identify causal
effect in the IV framework {Angrist et al., 1996). Supposing a binary treat-
ment and outcome distributions of various compliance statuses in the same
class, we show that relaxing the exclusion restriction introduce two mixtures
of distributions in the parametric model. Some of the usual difficulties in
identifying and estimating mixed distribution models, such as the switch-
ing of mixture component indicators, the presence of several local meximum
likelihood points and the singularities of the likelihood function (McLachlan
and Peel, 2000}, complicate our likelihood-based analysis.

- This article is briefly organized as follows. Section 2 fixes the conditions
for the identifiability of the model when the outcome distributions of vari-
ous compliance statuses are in the same class. In this context the study of
identifiability is driven by the need to attain a right labelling of the mixture
components. In Section 3 we propose two-steps estimation procedures when
the outcomes are normally distributed. The proposed. procedures are based
on identifying the efficient likelihood estimate as the solution of the likelihood
equations closest to a consistent, but not efficient, estimate of the parame-
ters vector or of a suitable parameters sub-vector. Their relative merits will
‘be investigated. by simulation studies in Section 4. Section 5 concludes the
paper by proposing an application based on a microeconomic data set; this is
suggested by a recent paper of Ichino and Winter-Ebmer (2004) who inves-
tigated the long run educational cost of World War II. The results obtained
by applying the proposed procedure are compared to those obtained by the
IV method. : ' 4



2 Identifiability

A remarkable contribution to the parametric formalization of the IV tech-
- nique in identifying and estimating the causal effects is due to Imbens and
Rubin (1997a). The authors based the resulting distribution function on the
concept of potential quantities: the concept of causality we want to adopt in
this paper. Consequently, the population under study can be subdivided in
four groups that are characterized by the way the individuals react, from a
counterfactual point of view, to the assignment to treatment. These groups
are labeled compliance statuses. To clarify, assume the simplest experimen-
tal setting where there is only one outcome measure (Y;), and where the
assignment, to treatment (Z;) and the treatment received (I;) are binary
(Z; = 1 =dssigned, Z; = 0 =not assigned; D; == 1 =received, D; = 0 =not
received). In settings of imperfect compliance with respect to an assigned
binary treatment, and on the basis of the concept of potential quantities,
the whole population can be subdivided into four subgroups to characterize
. different compliance behaviors. Units for which Z; = 1 implies D; = 1 and
Z; = 0 implies D; = 0 {compliers) are induced to take the treatment by
the assignment. Units for which Z; = 1 implies D; = 0 and Z; = 0 implies
-D; = 0 are called never-takers because they never take the treatment, while
units for which Z; = 1 implies I); == 1 and Z; = 0 implies D; = 1 are called
always-takers because they always take the treatment. Finally the units for
which Z; = 1 implies D; = 0 and Z; = 0 implies D; = 1 do exactly the
opposite of the assignment and are called defiers. Fach of these four groups
define a particular compliance status.

Let Y;(Z; = 2z, D; = d) with z € {0,1} and d € {0,1} be the potential
outcome with respect to the assignment, z, and to the treatment, d. 'The
exclusion restriction implies that Y;{Z; =1, D; = d) = Yi(Z; = 0, D; = d)..
In order to achieve a complete relaxation of the assumption, the current
study. employs a likelihood estimation approach which is known to be often
more efficient than the IV framework in the identification and estimation of
cansal effects for compliers (Imbens and Rubin, 1997a; Little and Yau, 1998;
Jo, 2002). At these _purposes let introduce this set of assumptions:

' Assumption 1 : SUT.V.A (Stable Unit Treatmen: Value Assumptwn}
' by which the potential quantities for each unit are unrelated to the
treatment status of other units;

Assumption 2 : 7 Random assignment to treatment” by which the proba—'
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bility to be assigned o the treatment is the same for every unit;

Assumption 3 : Nonzero avemge causal effect of Z; on Dt, imposing the
presence of compliers;

Assumption 4 : ”Monoﬁon_icity”l imposing the absence of déﬂers; .

Assumption 5 : the outcome distributions of various compliance statuses
 are in the same parametric class.

Assumptions 1-4 are the necessary set of conditions for identifying the
compliers average treatment effect by the IV method, apart from the ex-
clusion restriction (Angrist et al., 1996). The distribution function for a
randomized experiment with imperfect compliance, a binary treatment, un-
der theprevious 1-5 assumptions, and adopting the parameter set proposed
by Imbens and Rubin (1997a), is in the parametric class:

= {f(yz: di: Zi; 9) = I';(Di=1,Zi=0) : (1 — 7;) Tl gil} - IC(D5=G, Zi=1) " T - Wy "gvizl"”’i"

D=1, 5=1) " T {wa - gf"r.l e We giz) + Iy(Di=0, Z:=0) * (1—m)- (Wn . gﬂfzo + W - 920)!9 E@}
where

@ : {8 (Wiwa;wnawcanaﬂana}Jnn(})nnl}nc{J!ncl) Z wt - 1 Wy > O Vt 0> > 1}

t=a, 1, C

\ | (@)
and where: Iy is an indicator function; ¢(D; = d, Z; = z) is the group
of the units assuming treatment d and assigned to the treatment z; 7 is the
probability P(Z; = 1}; w, is the mixing probability, that is the probability of
an individual being in the ¢ group, t = o {always-takers), n (never-takers), ¢
(compliers); the function ¢f, = g:.(y;;1,,) is the outcome distribution for.a

unit in the ¢ group and assigned to the treatment 2.
Then (1) factors in four terms, where any term refers to a group <{D; =
d, Z; = z) of the units assuming treatment d and assigned %o the treatment 2.
" In particular the units in group ¢(D; = 0, Z; = 0) are a mixture of compliers
and neverwtakers;- and the units in group <{D; = 1,Z; = 1) are a mixture



of compliers and always-takers. Mixture models can present particular dif-
ficulties with identifiability; consequently the study of identifiability for the
parametric class F' | that involves two mixtures, is not straightforward. In
order to explain the reasons of these difficulties, let’s consider the general
class of distribution functions from which the two mixtures are to be formed:

G= {g(y},;n}I nel,ye R}, (3)

and the general class of distribution functions of two-components mix-

. tures of (3):

, .
F'= {f(yiag) = wn g g5 €G, Yh; € R; 0 69} (4

h=]

where
O = {9 = (wiyw%n}:né}] ((-U]_ +Ld2)§ 19 Wy > O: wo > 0: /] GT}

Tn general a parametric family of densities £ = {e(y; \): A€ A, y € R}
is identifiable if distinct members of the parameter space A always determine
distinct members of the family:

e(y; N =mely; A") & N = A"

It is well known (Titterington et al., 1985; McLachlan and Peel, 2000)
that (4) is not identifiable, since f(y; &) is invariant under the two permuta-
tions of the component labels % in 8. Indeed, the presence of two densities
in the same class, g{y;1,) and ¢(y; n,), implies that f(y;8) = f(y; 6"} if the
- component labels 1 and 2 are interchanged in " compared to 8. Titterington
et al. (1985) propose a weak definition of identifiability for finite mixtures
of distribution in the same parametric class by which a class of mixtures is
identifiable if distinct members of the parameter vector © always determine
distinct members of the family up to permutations of the label components.
Under their definition, (4) is identifiable if and only if G i$ a linearly indepen-
dent set over the field of real number K. Relevant ﬁndings in the literature
(for example Titterington et al., 1985; Teicher 1961, 1963; Yakowitz and
Spragins 1968; Li and Sedransk 1985) shows that apart from special cases
with very simple density function such as finite mixtures of uniformes, or
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with finite sample spaces such as mixtures of two Bernoulli distributions, the
identifiability up to the permutation of label components of (4) is generally
assured.

However, and contrarily to an analysis of the mixture model f(y;,8) € F”
at cluster purposes, the components labelling matters for f(y;, d;, 2;;0) € F'
at causal inference purposes. The causal effects from a counterfactual point
of view are indeed defined by the three differences Ay == (1, — ftyg), Where
t = a,m,c. Consequently, the right labelling of all the components now
matters in order to identify A;. For example, let’s consider a point 8, for.
which the component labels of the mixture ¢{D; = 1,Z; = 1), composed
by assigned always-takers and assigned compliers, permute compared to the
true parameter vector €. In this case the causal effects of the assignment to
treatment for always-takers and compliers are not identified because of the
permutation of component labels in 8. Indeed, the causal effect for compliers
- A in @ would be wrongly identified by (u,, — tig) instead of (. — a0l
and the causal effect for always-takers A, would be wrongly identified by
(koer = Han) instead of (tgy — Hag)-
. In order to study the identifiability of parametric class (1), let’s consider
this is a member of the more general class:

M = {m{y,%;8) = Ixear) m1(y; 0) + Ipcenzy ma(y; 0) + - -+ Iixea,y m(y; 6) + -

- +leary mi(y; O)ly € R, x €A C RY, A= U4y, niA; =0} (5)

where the & distributions m;{y; @) are not necessarily in the same para-
metric class. A first useful result is proposed in the following proposition::

Proposition 1 A necessary and sufficient condition fo'r parametric class (5)
to be identifiable is that set Z = N,;E; = 0; where E; is the set of pairs (6/,6"),
8 # 0" € © such that m;(y; 0') = m;(y; 8").

Proof (Necessity): - suppose that = = M5, 5 0, thenm;(y; 8') = my(y; 67,
Vj and ¥V (¢,8") € E. Consequently m(y,x;0") = 3. Ixeay m;(y; &) =
> Iweagy mi(y; 87) = mly,x;8"), v(6',8") € =, which implies that (5) is
not identifiable. '

Proof (Sufficiency): If E = M;E; = 0, then # pairs (6/,0"), 8’ £ 8" ¢ ©
such that m;(y; €') = m;(y; 8"), V5. Consequently Iy such that m{y, x; @) =
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> denny mi (5 8) # 205 Ixeas mi(y 0" = m{y,x;8") which implies that
(5) is identifiables _
Parametric class (1) is a particular case of (5), with & = 4. Proposition
2 identifies the set = for (1) under the assumption that parametric class of
_ the outcome distributions is a hnea,rly independent set over the field of real
number R: '

Proposition 2 If, in (1), the parametric class of outcome distributions G is
‘o linearly independent set over the field of real number R, then one of the
following conditions holds for any pair (8,0 cZ#0, 0 #£0" € 0:

VY N
We = W, =W, = W,
or
o | )
Wy = W, =W, = W,
or
R A I ) Y /SN 7
W, = W, = W, =W, = W, = W,

Proof: Given G is a linearly independent set over A, the mixture in ¢{D; =
1, Z; = 1) is identifiable up to permutations of the label components in the
parametric sub-vector (Wy, We, May, M ). The pairs (6',07), 6 # 8" € © in
Ei(pi=1, z:=1) are such that & is an element of the set

{91 : (w;, wlci ﬂgl’ ?”If:z‘) X {wm Mo 77&:0} x {na(}} X {nni} l Zwt = Lw: >0, \-’It} '
o t '
and 6" is an element of the set
{9” (Wl Wiy, M) % A, Mgy Mo} % {Mao} X (M} 1D wi =1, we >0, \'/t} ,
: ' ot

where (w}, wl, 7, 1) = (o, @l W, ) up to permutations of the
label components.

Again, given G is a 11near1y mdependent set over R, we cannot have

Wiy = Wiy unless 7, =y and W/, = . Consequently, permutations

of the label components in q(Di =1, Z’z- = 1} are restricted to the case w/ ==
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wl, = W = W The pairs (9' 6,8 #60"c 0 in M(Dz_; z=1) M E(pi=1, z:=0)
are such that @ is an element of the set

{9! : ((.u"m w’cﬁ qul? 7?;1???,(10) x {wn7 nnﬂa.nc{]} X {Tt,nl} t Zwi = 1) wy > 0: Vt}
: t
and " is an element of the set

{9” (wm wci T}(ﬂi ﬂcl’ﬂa{)) X {wnﬁ oy ﬂc{)} x {nni} I Zwt - 1 Wy > O Vt}

where:
(w;= w:;: 7?:;,1: 7?21:?730) = (w,a,? WZ} T]gli ngl} Wge): if w; # wi:a
or
('r}al, ) = (nai, 'qd) up to permutations in the label components, and
(wa» wc; Mao) = (Wa, e Map)s H w) = wi = wy = wi. :
Given the constraint Y, wy =1wehavew], = 1 -/, —w) =1 - —w! =
i; Given the linear independency of the elements of G, we cannot have
Wil = Wyl unless myy = 77, and ), = oy, This implies the pairs
(9! 9”) 9" % 9” € 0 in E(Dimg,zwl} Nz Dyl Ze0) ﬂ N(D ;=0, ,51__1) are such
that @ is an element of the set

W

{9, : (w;? wgﬁw;z: ?7;1; 77::13 ?711@:?}';11) X {??na;'%o-ﬂ Zwt = 1! Wy > 01 Vt} .
. t
and " is an element of the set
{9” : (wg, w::’?w;; _T-'gi: ﬁfcllifqgo: 77:;3) X {Tinm Wco} | Zwt = 11 we = 0: Vt} *
. _ ) Z

" where:
i

/ e PR i
(wa? n: T]al: ncbnaﬂ nnl) (wa; Wc}wn: 7?@1’ ncj_} na(]:??nl)? if Wy, 7
i

fs3]
or . _
( ngl, M) = (”Lm ) up to permu’cations in the label components, and
(Why Wy Wiy Mog, 1) = (Wa, W, Wiy Mg, Ty ), 0l = wi = wp = wi.
Fmally, given G is a lmeariy independent set over R, the mixture in
¢(D; =0, Z; = 0) is identifiable up to permutations of the label components
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in the parametric sub-vector (wy, We, M,g; Mep)- Lhis implies that the pairs
(6',8"), @ # 8" ¢ © in E are such that one of the following conditions holds:

(1, %) = (1, n'4) up to permutations in the label components, and

! ro ! i o " T I ] : A B
(wcu Wes Wiy a0y Theos Tlaos nnl) - (waa Wer s Mngs Meos Maos nni): lfwa =W, =

o= o,

or :
(70, M) = {10, M) up to permutations in the label components, and
(w;, w,ca‘w;wnal: ﬂclan;ﬂan’nl) = (Wg= wg?wg> a1y Nes ﬂg(}: ﬂﬁa ,fwy, = wlc =
w.f! . wﬂ' -

T ™el

or . _

(M1, M) = (M1, &) and (g, 7eo) = (7o, Teo) UP to permutations
in the label components, and (w;: wlc;_w,m ??;0:"?%1) = (Wg, wgwwg?ngﬂa T’;il 3
Hfw), = w= W), =w = W = wye :

Given Propositions 1 and 2, a distribution function f(y, d;, 2;0) in (1)
is identifiable unless: w, = w,, Or W, = W, OF W, = Wy, = W,. Lhisis a
set of less restrictive conditions compared to simple mixture models where
identifiability is assured only up to permutations of the label components.

The restriction on the parametric class of the outcome distributions G,
imposed in Proposition 2, rules out the case of a binary outcome. The para-
metric class of binomials Bi{N, ), 0 < 8 < 1, is indeed a linearly independent
set on R if and only if N > 27 — 1, where N is the number of independent
trials for each observation (Teicher 1961, 1963; Titterington et al. 1985).
Given T = 2 for the two mixtures in (1), the condition on N is not satisfied
for a birary outcome, where N = 1 « 27"~ 1 = 3. This implies that for a
binary outcome = could be greater than under N > 27— 1. This is confirmed
by an application to data from a randomized community trial of the impact
of vitamin A supplements on children’s survival (Imbens and Rubin, 1997a).
The authors made a likelihood analysis of this randomized experiment with
noncompliance, a binary outcome, in absence of always-takers and removing
the exclusion restriction. There was no a unigue solution, rather the resulting
likelihood function had a set-valued maximizer.

3 Estimation issues

We have showed in Section 2 that in a likelihood-based analysis of a random-
ized experiment without exclusion restriction the parameter, vector € is only
partially identified. In recent years, some methods for relaxing the exclusion
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restriction based on expioitiﬁg extra information compared to the assump-

tions 1-5 of Section 2 were proposed. For example, Hirano et al. (2000}
that worked in a Bayesian context adopting a relatively diffuse but proper

prior distribution, or more recently Jo.(2002) that studied alternative model

specifications allowing the identification of causal effects in the presence of

observed pretreatment information. In this Section the case of normally dis-

tributed outcomes, that is posing g¢, == N (yi; ty,, 0t2) in (4), is considered.

An alternative approach based on identifying the solution of the likelihood

equations closest to the method of moments estimate of the parameter vector

will be proposed. ' . ' ’

A first problem associated with a likelihood analysis of @ in (1) arises from
the possibility to have multiple roots for the likelihood equations. This is due
to the two mixtures of distributions involved, indeed the likelihood function
for a mixture model will generally have multiple roots' (McLachlan and Peel,
2000). The presence of multiple roots when the likelihood is based only on the
units in one of the two mixtures, that is 3 ;e p,—y 7,21y 108 (%, diy 25 was we, Tots Ter)
OF 3 Licc(Dymt, Z:=0) 108 Flys, dis 253 Way Wey Mgs Nen ), 18 sufficient to have multi-
ple roots for the likelihood equations based on the entire sample, given the
particular factorial structure of the distribution (1). A proof is in Appendix
A. In general when the likelihood equastions have multiple roots, the consis-
tency of the MLE is guaranteed only for those class of distributions satisfying
Wald’s conditions (1949).

"~ Supposing norma_,'liy distributed outcornes, additional problems arise from
the unboundedness of the likelihood. These are due to the fact that likelihood
function for a mixture of normal distributions is unbounded, Day (1969).
Again, the unboundedness of the likelihood function based only on the units
in one of the two mixtures, ¢ € ¢(D; =1, Z; = 1) ori € ¢(D; =0, Z; = 0},
implies the unboundedness of the likelihood function based on the entire
sample, given'the particular factorial structure of the distribution (1). A
proof is in Appendix B. The consequence is that an efficient estimator could
not exist as a global likelihood maximizer. The existence of a consistent
and efficient likelihood equation root is guaranteed by the satisfaction of
the multivariate extension of the Cramer conditions. Simple but tedious

1The local maximum points that do not correspond to the consistent maximizer are
usually indicated as "spurious” maximum points in the mixture models literature. In
particular, for normally distributed outcormes the spurious maximum points corresponding
to parameter points having at least one variance component very close to zero are generated
by groups of few outliers (Day, 1969).
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checks show the existence of the first, second and third derivatives of the
likelihood. Each of these derivatives has a factorial structure where each
factor is a derivative of the type showed by Kiefer (1978) in proving the
existence of a consistent and efficient likelihood root for a mixture of two
normal distributions. This guarantees the boundedness of them and the
positive definiteness of the dispersion matrix.

(Given the presence of multiple roots for the likelihood equations and
the unboundedness of the likelihood function, an approach to identify the
consistent and efficient estimate can be based on finding the root closest to
a consistent estimate of the parameter vector, typically that resulting by the
method of moments (Lehmann and Casella, 1998). In the present case the
method of moments estimate of the parameter vector, 8, are obtainable by:

o equating the first three moments of f{d;, 2 ; Wa,Wn, 7) to its first three
sample moments; we obtain &, = 3, Iip,=1, z=0)/ 2 _; {(z:=0) (the pro-
portion of treated units in the group of not assigned units), &, =
S Iipi=0, z=1)/ 2 d(z:=1) (the proportion of untreated units in the
group of assigned units), ¥ = >, Iiz,=17/NV, and &, as the difference
We = I —@a— Wn; ’

e equating the first two moments of Iy p,=1, z:=0) NV (¥s; thaos Fan), a0 L(p,=0, z;=1) N (113,
to their first two sample moments respectively. We obtain: fi,o and Gao
as the sample mean and sample variance of y; fori € ¢{D; =1, Z; =

-0}, [y and &,y as the sample mean and sample variance of y; for
ie(;(Di:G, szl);

e equating the first five moments of I(p,=1, z;=1) V(15 Wei11s Ma1s ers Tals el )y
and L(p,=0, z:=0) NV (Us; @el00s fnos fogs Tns Tco) tO their first five sample
moments; where wgqs is the conditional mixing probability P(C; =
t|D; = d, Z; = z). We know the two mixtures are identifiable only -
up to the permutation of their label components. A way to check the
labelling for the mixture ¢(D; = 1, Z; = 1) can be proposed by com-
paring the resulted estimate &1y to a simple transformation of @, and
et Wef Wy + @e); the latter is indeed a consistent estimate of weyp
then a good term of reference to compare @gy. The proposal is fo-
check the distance hetween & Wt and @./(@, + @,); then to switch the
tern (wcill: fro1, Ger) b0 (1 — Wepnts By Far) if [wcgn — @/ (g “{“wc)! >
(1 — @gu1) — W/ (@a + @c)|- Analogous arguments hold for the other
mixture. :
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~However, there is no guarantee to obtain an unique real solution for the
two mixtures without imposing the equal variances conditions: ¢, = 0g
and o,y = 04 (Quandt and Ramsey, 1978; Lindsay and Basak, 1993). Under
these two homoscedastic conditions, the likelihood analysis can be performed
in a first step by calculating 6, then detecting the root of the likelihood
equations closest to 8. In order to make the detection less time consuming,
it can be limited to a neighborhood of 8: Q2 (where A is the radius).

An empirical procedure can be proposed also for the unrestricted (het-
eroscedastic) case where the component variances for the two mixtures are
unequal. Given the method of moments estimates of the mixing probabilities,

- @ = (D4, W, W), are not affected by restrictions on the variance components,
then the second step can be limited to detect the root 8 whose subvector
& = (@4, Wn, @) s closest to @. Again, the detection can be limited to a
neighborhood of & and of radius h: 0¥, From a theoretical point of view, the
procedure guarantees only the detection of the efficient likelihood estimate
for w = (W, Wn, w,); however the simulation-based analysis in next section
will show the conditions under which the method can have a good perfor-
mance in detecting the efficient likelihood estimate for the entire parameter
vector 8. ' '

From a computational point of view, the EM algorithm can make the
inference relatively straightforward. The EM algorithm is indeed attractive
in making likelihood inference because if the compliance status C; was known
for all units, the likelihood would not involve mixtures. The compliance
status of the units in any of the two mixtures can be indeed considered as
a-missing information whose imputation produces the so-called augmented -
likelihood. Moreover, in our context the augmented log-likelihood functionis
linear in the missing information, so the EM algorithm corresponds to fill-in
. missing data and then updating parameter estimates. The imputation of
the unobserved compliance status is handled by the E-step; it requires the
calculation of the conditional expectation of C; given the observed data and
the current fit for 8. The compliance status C; can be represented by a three
component indicator t = ¢ (complier), n (never-taker), a (always taker). At
the k-iteration, the conditional probability of subject 7 being type ¢ given the
observed data and a current value of the vector 0, 7 )(9(13_1}), is obtainable
by a ratio of two quantities. The numerator of the ratio is the corresponding
Table 3.1 entry and-the denominator is the corresponding row total, where

ﬁiz(k"i) is the outcome distribution for a unit in the ¢ group and assigned to
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the treatment z,- based on the estimated pammeter vector updated at the
-1
(k — 1) iteration, a" }

(k=1)

Table 3.1. Inputs for calculating the conditional probabzlztzes fr(k)(B ).
D, Z; Subject type t
t=a ot=mn t=c
0 0 0 {:}(k,_}) j gz %k—l) ‘ ~ (k 1) | §1 {(k—1)
TE ki3 1l
0 1 0 1 0-
10 1 0 0
11 of g 0_ DAY

The subsequent M-step then maximizes the log-likelihood function based
on the angmented data set, that is the data set created by merging the ob-
served and the imputed data. This is equivalent to a weighted maximization

“of the log-likelihood function, where subjects are differently classified in the
different compliance groups, ¢, with weights equal to the conditional prob-
abilities of being m t calculated in the E-step. The output is the update
estimated vector @ )

In particular, for the normeal distributions case the updates of the com-
ponent means, ,ugz), and component variances, (o*tz }2, are given by:

N ]

6y 'i{ﬂf)(é““*”u — )y I(sz}/z{ AR (¢

g =1

4 Examples based on artificial data sets

This Section proposes some simuiation- analyses based on artificial samples
from hypothetical distributions satisfying the assumptions 1-5 presented in
Section 2; we are therefore fully relaxing the exclusion restriction. The aim
is to study the relative advantages of the two-steps procedures proposed in
Section 3.

We start by analyzing the homoscedastzc case. At thls PUTpOSe We con-

sider a set of six hypothetical populations with equal distributions apart
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from the parameter u., for which we choose a set of values ranging between
ey = 1.2 and py = 6. The mean for the compliers not assigned is indeed
posed o = 1.2, 2, 3, 4, 5, 6. We impose the equal variances condition for
any of the two mixtures: o1 = 0a = 1.2 and o = 0 = 0.85. The common
parameters values for the six hypothetical distributions are shown in Table
4.1.

Table 4.1. Hypothetical populations
distributions under the homostedastic
conditions: common pararmeters values.

t wy (L5 O10) (bigr; 7a1)
a 04 (0,1 (1,1.2)
n 0.25 (1,0.83) - 2, 1)

c. 035 (.,085) (7, 1.2)

T = P(Z = 1) = 0.25

In order to evaluate the performance of the two-steps procedure restricted
o Qh, we drew 100 samples each of size 10000 from any of these six distri-
butions and for any of the proposed value of A (0.25, 0.15, and 0.04). For
each sample, we started 50 times the EM algorithm with random values of-
g, and we detect the root closest to 8 in 529 Table 3 shows that, for the
considered samples, the two-steps procedure does not always converge to the
solution corresponding to the consistent maximizer®. Indeed, it can converge
also.to spurious solutions, or to points on the boundary of QY. However, we
note that, for any of the proposed value of A, the frequencies of convergence
to the consistent solution increase with the value of p,y, that is with the dif-
ference in means for the mixture of compliers and never—takers not assigned:

lf“[’cD Ju'nﬂl l.u'co - 1|
?Like in Hataway (1986), the local maximum point that corresponds to the consistent

maximizer is taken to be-the limit of the EM algorithm using the true parameter values
_ as a starting poind.
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Table 4.2. Performances of the two-steps procedure Testricted to Qg
for some values of h and pg; homoscedastic case®.

_Converge.nce Con\{erge_nce | Convergence on the
h  py  to the consistent to a spurious bound faf
solution solution oundary ot Se,

025 6 100 ' 0 0
5] 100 ' 0 0

4 100 0 0

3 100 0 0

2 30 14 56
12 12 12 76
0.15 6 100 0 0
) 100 0 0

4 - 100 -0 0

3 ‘ 97 ) 3

2 22 6 T2

1.2 0 3 97

004 6 46 0 54
5 34 0 67

4 20 0 80

3 .24 0 76
2 0 ] 100
1.2 o0 0 100

*: 100 replications for any value of A and pcg; size: 10000 for each sample.

The simulation analysis continues by removing the equal variances condi-

tions, then considering‘the two-steps procedure restricted to ). We repeat

the simulation analysis with six hypothetical distributions whose parameters
assume the same values of the previous ones apart from o,g, that now is posed
oo = 1.15, and o, that now is posed o = 0.7. The common parameters

values for these hypothetical distributions are shown in Table 4.3. Table 4.4

shows that, like in the homoscedastic case, the two-steps procedure does not

always converge to the solution corresponding to the consistent maximizer.
Again, the frequencies of convergence to the consistent solution increase with
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the difference |,y — pol for any of the proposed value of h (0.03, 0.01 and
0.005). - |

Table 4.3. Hypothetical populations
distributions (heterostedastic

case): common parameters values.
tow (H50, 710) {fe1, 0e1)

a 04 (0,1) (1,12

n 025 (1, 115) 2,1

c 035 (.,685 - (7,0.7)
T=P(Z;=1)=025

"Fable 4.4. Performances of the two-steps procedure restricted to 974
for some values of h and p; heteroscedastic case®.

Convergence Convergence
. . Convergence on the
h  uy  tothe consistent  to a spurious 5
. . boundary of €2

- solution solution =
003" 6 100 0 0
5 100 0 0
4 - 100 0 0
3 67 33 0
2 54 ' 46 0
. 1.2 48 52 0
001 6 60 0 40
5 59 o i1
4 75 0 25
3 50 o 31 ' 19
2 42 o 35 : 23
1.2 38 38 ' 24
0.005 6 44 0 56
5 46 0 54
4 42 0 58
3 30 ' 25 - 45
2 27 23 50
1.2 22 23 iti}

*: 100 replications for any value of ki and p; size: 10000 for each sample.
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Table 4.5 presents the average Allocation Rates, AR (McLachlan and
Basford, 1988), calculated for the consistent solution over 100 replications.
from the hypothetical distributions of Table 4.3 for each of the proposed
values of . The AR is a useful indicator for quantifying a mixture dis-
entanglement and is calculated by averaging the higher imputation proba-
bility* for any unit observed at convergence of the EM algorithm.: AR =

{Zji (Max;, T fﬁﬁz(a{k 1))} /N. The AR takes the upper value 1 only if the
mixtures are perfectly disentangled, otherwise AR is less than 1 but positive.
The lower bound for AR is 1/p, where p is the number of mixture compo-
nents (AR > (0.5 in our cases). Low AR values correspond to bad mixtures
disentanglements, and vice-versa. Table 4.5 shows an increasing trend: that -
the overall average AR increases with the difference |py — pinol. In partic-
ular, while the average AR is substantially stable over the six populations
concerning mixture ¢{[; = 1, Z; = 1), the decreasing value of the overall AR
is due to the bad dlsentaglement of ¢(D; = 0,2; = 0).

" The simulation-based analysis suggests the identification of the consistent
solution with the proposed two-steps procedures is feasible when a good dis-
entanglement of both the mixtures happens as indicated by the average AR
values. The procedure under the homoscedastic conditions appear to perform
slightly better than in the heteroscedastic case. The former indeed does not
converge to spurious solutions even for the samples where p, = 3, other
than when p is posed equal to 4, 5, and 6. The negative eflect of getting
near the means of a mixture has been sufficient in order to increase the fre-
quencies of converging to a spurious solution both for the homoscedastic and
heteroscedastic case. A practical suggestion then can be to check the overall
AR and to compare the distances to 8 (or @) for the solutions detected in the
neighborhood Q (or QF). A low overall AR and the presence of solutions
with no apprecz.ab}e different distances to 8 (or &), can be considered as a
signal for the necessity to introduce a restriction on the difference |y — fi,0]

and/or |f1,y — fho |-

3The imputation probability is the conditional probability of unit ¢ being compliance
status ¢ given that the unit is in group ¢(; = d, Z; = z), Mercatanti (2005).
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Table 4.5. Average Allocation Rates (AR) for
the consistent solutions for some values of pg.*

feo _ Average AR
' Overall 0.8327
1.2 for o(D; =1,%; = 1) 0.9990
for ¢(D; = 0, Z; = 0)  0.6269
Overall 0.8760
2.0 for ¢(D; == 1,2Z;=1) 0.9991
for ¢(D; =0,%; =0) . 0.7249
Overall 0.9346
3.0 for ¢(Dy=1,Z;=1) 0.9991
for S"(Di == D, Zi = 0) (.8550
Overall 0.9724
4.0 for ¢(D;=1,Z;=1) 0.9993
for ¢(D; =0,2; =0} 0.9391
_ Overall 0.9900
50 forg(D;=1,2Z;=1) 0.9993
for ¢(D; == 0, Z; = 0}  0.9782
Overall : 0.9971
6.0 for ¢(Dy = 1,2, =1) 0.9992

for C_,'(Dg == (, 2y = O) 0.9940
*: 100 replications for each fi.4; size: 10000 for each sample.

In order to evaluate the relative merits of the two-steps procedures, we
continue our analysis by drawing 100 samples of size 10000 from two hy-
pothetical populations. One of these population satisfies the homoscedatic
conditions and has the parameter values listed in Table 4.1; the other one
does not satisfy the homoscedatic conditions and has the parameter values
listed in Table 4.3; 1, is posed equal to 6 for both the hypothetical popula- -
tions.

The efficient likelihood estimate, ELE, interior to Qf has been identi-
fied, running the EM algorithm and posing h = 0.25, for each sample from
the hypothetical population satisfying the homoscedastic conditions. Anal-
ogously for the samples from the other hypothetical population, where A is
posed equal to 0.03 in 7. Tables 4.6 and 4.7 report mean biases, root mean
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squared errors, coverage rates of 95% confidence intervals, and mean widths
of the intervals, for the repeated estimates of some parameters. The results
‘are also compared to other standard procedures: (i) the maximum likeli-
hood method under the weak exclusion restriction, by imposing: fiy; = ugs
Pont == fhngs Ta1 == Ca0, On1 = Opo; (i) the C.A.CE. (Compliers Average
Causal Effect), i — fy, Obtained by the instrumental variables method.

Tables 4.6 and 4.7 show that the estimations of the compliers parameters
based only on imposing the weak version of the exclusion restriction sys-
tematically present absolute mean biases and root MSEs higher than those
calculated by the two-steps procedures. The C.A.C.E. estimations obtained
by the instrumental variables method, that have very high coverage rates but
at the cost of dramatically higher mean widths of associated 95% intervals are
even worse. It is to be put in evidence that the maximum lkelihood analyses
under the weak exclusion restriction do not produce unique solutions on the
artificial samples. For this reason, the analyses under the weak exclusion re-
striction have been restricted to a neighborhéod of &, = (&,, &p, &), posing
the radius equal to 0.01, for both the hypothetical populations.
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Table 4.6. Operating characteristics of various procedures for replications from an

hypothetical distribution (homoscedastic case).

95% Interval

Parameter =~ Estimator Mean bias Root MSE Coverage Mean
_ ' : Rate width
Uep = 6 ELE interior to O -0.001 0.025 0.93 0.097
' MLE under the -
exclusion restriction (0.109 0.136 0.33 0.093 .
Py =7 ELE interior to Y -0.004 0.046 0.95 0.182
MLE under the S _ ‘
exclusion restriction . 1.254 1461 0.00 0.330
Oep == 0.85 ELE interior to 2 -0.000 - 0.008 1.00° 0.048
MLE under the - 4
exclusion restriction 0.019 0.022 0.67 0.048
O =12 ELE interior to ¢ 0.001 0.019 1.00 0.129
MLE under the
: exclusion restriction  -0.987 1.204 0.02 0.340
C.A.CE=  ELE interior to {2 0.004 0.045 0.94 0.180
tey — Mo = 1 MLIE under the ' .
exclusion restriction 1.145 1.412 0.04 0.336 -
IVE -1.802 1.817 - 1.00 16.07
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Table 4.7. Operating characteristics of various procédures for replications from an

hypothetical distribution (heteroscedastic case).

95% Interval

Parameter Estimator - Mean bias Root MSE Coverage Mean
_ ‘ Rate width
Yy = 6 ELE interior to (¢~ -0.001 0.025 0.94  0.098
MLE under the : :
_ : _ exclusion restriction 0.211 0.213 - 0.00 0.096
Moy =T ELE interior to (3f -0.004 0.030 - 0.97 0.118
MLE under the :
~exclusion restriction 0.253 0.255 0.00 0.118
O = 0.85 ELE interior to §¥ -0.001 0.01r (.98 0.050
- MLE under the '
exclusion restriction 0.034 0.036 0.26 0.049
O = 0.7 ELE interior to ¥  -0.001 0.016 0.94 0.068
_ ' MLE under the L |
exclusion restriction -0.009 0.021 0.86 0.066
C.A.CE=  ELE interior to (% -0.003  0.030 - 0.97 0.115 -
fei — Moo = 1 MLE under the o
o exclusion restriction  0.041 0.050 0.70 0.115
- 15.99

IVE -1.844 1.857 1.00

5 Amnillustrative application: return to school-
- ing in Germany and Austria

In microeconomic literature, the IV method has been widely used in eval-
uating return to schooling. The method provided indeed a good.strategy
for solving the selection bias problem that arises when an individual’s choice
of educational attainment is related to the potential earnings (Card,1099).
Some previous studies provide examples of various choices of the instrumen-
tal variable such as: quarter of birth {Angrist and Krueger, 1991), college
proximity (Card, 1995; Kling, 2001), education policy reform (Denny and
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Harmon, 2000), presence of any sisters (Deschenes, 2002), place of chlldhood :
(Becker and Siebern-Thomas, 2004).

In particular, two remarkable studies have been recently proposed by
" Ichino and Winter-Ebmer (IW henceforth) in 1999 and 2004. In both papers
the authors investigated the causal effect of education on earnings: the first
paper (1999} intended for estimating lower and upper bounds of returns to
schooling in Germany, the second (2004) for quantifying the long run edu-
cational cost of World War Two in Germany and Austria. In particular the
basic idea characterizing the IW 2004 paper relies on the fact that individu-
als who were about ten years old during or immediately after the war, were
damaged in their educational choices compared to-individuals in the imme-
diately previous or subsequent cohorts. War physical disruptions and related
consequences indeed made harder to achieve the desired level of education
for most of the schooling age population in these two countries. Moreover the
‘authors show, using the IV method, that individuals whose education was
affected by the war (compliers) suffered a significant earning loss about forty
vears after the end of the war. For this purpose the IW causal analysis was
supported by several instruments; in particular, given the date of birth can
be reasonably supposed to be a random event, cohort of birth was adopted
as an instrumental variable for both countries!. The authors had to assume
the exclusion restriction, other than the assumptions 1-4 of Section 2, for
identifying and evallating the average causal effect for compliers by the IV
method.
~ In order to'show an example of fully relaxing the exclusum restriction and
consequently estimating causal effects also for noncompliers, the previously
proposed procedure will be here applied to the same economic context of
the IW (2004) paper. The data are from Mikrozensus 1981 for Austria (a
1% sample of the Austrian population), and from the Socio-Economic Panel,
wave 1986, for Germany. We are considering males born between 1925 and
1949 for both countries.

Log hourly earnings for employed workers are observed about 40 years af-
ter the end of the war, Like IW, and in order to.consider the increasing trend
of individual earnings respect to age, the outcome Y; is defined as the resid-
ual of a regression of log hourly earnings on a cubic polynomial in age. An

*Other two significant instrumental variables were adopted for Germany: an indicator
of the father educational background and an indicator of the father’s serving in the military
during the waz.
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increasing trend respect to age also characterized the candidate treatment,
that is the individual years of education; for this reason the residuals of a
regression of years of education on a cubic polynomial in age are calculated®.
But in order to apply the previously proposed procedure, the treatment has
to be a binary variable. Then we define the treatment, D;, equal to one
if the individual residual is smaller than the residuals sample average and
equal to zero if the individual residual is greater than the residuals sample
average. In this way we are considering individuals having D; =1 as low
educated, and individuals having D; = 0 as high educated. The cohort of
birth is used as an instrumental variable, Z;, having the role of a random
assignment to treatment. For this purpose, Z; has to be necessarily equal to
one for people assigned to being low educated, and equal to zero for people
assigned to being high educated. Table 5.1 shows that both the estimated
mean years of education and the estimated mean residuals of the years of
education® are smaller for individuals in the cobort 1930-397 than for people
in the cohort obtained merging 1925-29 and 1940-49 cohorts. These results
suggest defining Z; = 1 for individuals born during 1930-39, and Z; = 0 for
individuals born during 1925-29 or 1940-49.

Table 5.1. Estimated meon years of educotion and estimated mean
residual of years of education per country and cohort of birth.

Country - Cohort of birth ~ Num. Years Residuals of

_ : observ. of education. years of educ.
Germany 193039 633  11.36 (0.001) -0.243 (0.091)
-1925-29 L 194049 893 11.86 (0.084) 0.099 (0.083) -

Austria - 1930-30 ) 11765 9.18 (0.017) -0.134 (0.017)

1925-20 U 1940-49 17383  9.49 (0.015)  0.073 (0.015)
Standard errors in parenthesis. - ' :

We apply the likelihood analysis presented in the Section 3 with no re-
strictions on the variance components. At this purpose the first step will be

5Like IW, these residuals are calculated by considering individuals born between 1910
_-and 1960, and by including two dummies (1949, 1952) in mder to consider the increases
in the minimal school leaving age in Austria.

fFor Germany, the units having missing values in the years of education have been
dropped, and the resulting sample size is 1526, There are no missing years of education
for the 28148 units in the Austrian sample. .

"The individuals in 1930-39 cohort were in schooling age during World War Two.
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limited to estimate the mixing probabilities by the method of moments, &;
the second step to detect the root of the likelthood equations closest to @
in Q2. The outcomes are assumed to be normally distributed®. Table 5.2°
presents the method of moments estimate of the mixing probabilities for the
two countries & = (Dq, On, Oc)-

Table 5.2. BEstimated mazing prob. Wy
per country, t = a,n, ¢

Country @y Wy e
Germany 0.7309 0.2219 0.0470
Austria - 0.7798 0.1519 0.0682

The value @, in Table 5.2, estimating the probability of an individual
bemg in the group of compliers, can also be obtained as the difference between
the average treatment under Z; = 1 and Z; = 0. A simple ¢-test on &,
- informs about the causal effect of the supposed randomized instrument on
the treatment; we obtain a highly significant result for the t-test on @, for
Austria (£: 10.58, s.e.: 0.0062, p-value: 0.000); for Germany the ¢-test on
@, assumes a value of 1.83 corrospondmg to & p-value of 0.067 (s.e.: () 0254),
then a significant effect but at a level of at least 6.7%.

We have seen in the Section 2 that the parameter vector 8, in is identified
unless w, = w, and/or w, = w,; these conditions on the mixing probabilities.
has been largely refused by likelihood ratio tests, based on f(d;, z; wa,wn),
for both the countries. Table 5.3 presents the results of the two-steps proce-
dure posing A = 0.03 in §27. '

For Germany the proposcd method produces a unique nonspuriots solu-
tion interior to Qh, GGW, whose elements are all significantly different from
ZEr0 apart from the outcome means for compliers, fi and fiy.

8This assumption is made accordingly to Imbens and Rubin (1997b) who estimated
the return to high school in the United States with quarter to birth as an instrumental
variable. Normality for the log of weekly earning was there assumed in order to present
a parametric MLE alternative to the standard IV method. Other than the exclusion
restriction, the authors imposed also that the variance for not assigned compliers equals
that for never-takers and the variance for assigned compliers equals that for aiways»takers

YUnits having missing values in the years of education and/or in the hourly earning
have been dropped. The resulting sample size is 15434 individuals for Austria, and 1160
for Germany.



For Austria, the procedure does not identify a unique nonspunous interior
solution; we obtain indeed two roots interior to (9
which all the parameters are significantly different from zero apart from the
outcome mean for assigned compliers ,0,01 '

gAuq 1 and gAns 2 for

~ Table 5. 3 Results from the iwo steps procedure restricted to Qh per

country; h = 0.03.

Germany

Austria’

BGer

BA—uﬁ,l FHa g
Hno < Hep

9Ans,2 Ol > /J'al.
Hng > .‘u‘c{)

07236 (0.0253

e ) 0.7769 (0.0075)  0.7764 (0.0075)
QO 0.2221 (0.0150) 0.1489 (0.0044)  0.1481 (0.0044)
We 0.0543 (0.0110) 0.0740 (0.0058) ~ 0.0753 (0.0058)
fiao -0.0872 (0.0317)  -0.0740 (0.0032)  -0.0740 (0.0032)
frar -0.1484 (0.0154)  -0.0802 (0.0042)  -0.0803 (0.0042)
fg 0.2243 (0.0256) 0.2806 (0.0132) ~ 0.3213 (0.0149)
for 10.3761 (0.0514) 0.3502 (0.0123) ~ 0.3502 (0.0123)
Freo 0.3559 (0.2334) 0.3395 (0.0282)  0.2589 (0.0214)
Pt 0.2795 (0.2922) -0.0437 (0.0326)  -0.0435 {0.0323)
Fap 0.5324 (0.0083) 0.2780 (0.0019)  0.2780 (0.0019)
a1 0.2709 (0.0116) 0.2464 (0.0032)  0.2462 (0.0032)
F o 0.2650 (0.0205) 0.2883 (0.0096)  0.4063 (0.0088)
o 0.4653 (0.0219) 0.3779 (0.0080)  0.3779 {0.0080)
e 0.9858 (0.1577) 0.4669 (0.0169) ~ 0.2349 {0.0163)
5l 1.4304 (0.3420) 0.5030 (0.0205)  0.5012 (0.0202)
# Obs. 1160 ' 15434 |
LogLik. -2140.4 -20799.4 " -20798.0
e, @) 0.0092 0.0071 0.0087 .
AR 0.9722 0.9354 0.9284.

Stand. err. in parenthesis are calculated by the asymptotic covariance
matrices of consistent roots. ‘

4@, 3) = /3 G — )P

The last row of Table 5.3 shows the values of the Allocation Rate (AR)

for each solution. We observe the unique solution for Germany obtains a
higher AR value compared to those for Austria. This result can be explained
by the univocal identification of the consistent solution being feasible when
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a good mixtures disentanglement of both the mixtures happens as indicated
by the AR values.

Table 5.4 shows the difference in variances for the two mixtures are signif-
icantly different from zero for any of the considered roots. These results do
not support to continue the likelthood analysis by assuming the homoscedas-
tic condltzons and detecting the likelihood root closest to @ in Y.

Table 5.4. Estimated difference in variances for the two miztures fmm
the two-steps procedure restricted to QF .

Germany Austria

BGer BAus 1% fhey Mgy 9At¥8,2 Ny U
Hap < Heg Hng > Hepr

Gao— By -0.7208 (0.1657)  -0.1786 (0.0214)  0.1714 (0.0201)
Gar — G -1.1595 (0.3403)  -0.2566 (0.0209)  -0.2550 (0.0205)

Standard errors in parenthesis are calculated by the asymptotic covariance
matrlces of the consistent roots.

Table 5.5 presents the estimated causal effect for each compliance status
compared to the estimated causal effect for compliers obtained by apply-
ing the IV method under the exclusion restriction (LATE: Local Average
Treatment Effect).

Table 5.5. Estimated causal effects for each complignee status from the
two-steps procedure restricted to %, and estzmated LATE per country.

Germany _ - Austria

L Onus,i * bt > Hay Oaus2 oy > flay
g < He ' Hap > Hen

flar = Pao “0.0612 (0.0302)  -0.0062 (0.0053) _ -0.0063 (0-0053)
iy~ fpg 01518 (0.0574)  +0.0696 (0.0180)  +0.0289 (0.0194)
P — frp 00764 (0.3737)  -0.3832 (0.0432)  -0.3024 (0.0387)

LATE . -0.1538 (0.6565) 70,3006 (0.0720)

Standard errors in parenthesis are calculated by the asymptotic covariance
matrices of consistent roots and IV estimators.

For Germany, the estimated LATE assumes a value of -0.1538 but not
significantly different from zero (s.e.: 0.6565). Relaxing the exclusion restric-
tion is not sufficient to obtain a significant compliers average causal effect,
but produces significant effects for both the noncompliers types; in particular
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we observe a negative effect for always-takers (-0.0612), and a positive effect
for never-takers (+0.1518).

The resulting significant effects for noncompliers can be explained by
general equilibrium considerations. In a recent remarkable paper Card and
Lemieux (2001), using a model with imperfect substitution between similarly
educated workers in different cohort of birth, argued that shifts in the college-
high school wage gap reflect changes in the relative supply of highly educated
workers across cohorts. The authors argued that the increase in wage gap
for younger men in U.S.A., UK. and Canada in the past two decades is due
to the rising of relative demand for college educated labor, coupled with the
slowdown in the rate of growth of the relative supply of college educated
workers. Tables 5.6 and 5.7 confirm these relations for our two countries.
Both the estirnated mean of log hourly earnings and the estimated mean of
the residuals of log hourly earnings differences between high, (D; = 0), and
low, (D; = 1), educated individuals are indeed greater for the cohort 1930-39,
(Z; = 1), than for the cohort obtained merging 1925-29 and 1940-49 cohorts,
(Z; =0). | | | ‘

Table 5.6. Estimated mean log hourly earnings per country,
. educational level { D;), and cohort of birth ( Z;).
Country Z; Num. D;=0 Dy=1 Difference
‘ " observ. o
Germany Z;=1 491  3.428 (0.044) 2.940 (0.023) 0.488 (0.053)
Z;=0 669  3.317 (0.035) 2.984 (0.024) 0.333 (0.045)
Austria  Z;=1 6214 4509 (0.124) 4.077 (0.004) 0.432 (0.108)
Zy=0 0220 4467 (0.008) 4.089-(0.003) 0.378 (0.007)

Standard errors in parenthesis.

Table 5.7. Estimated mean residual of log hourly earnings per
country, educational level (D;), and cohort of birth ( Z;).
Country .  Z; Num. D=0 D;=1 - Difference

' observ. . o
Germany Z; =1 491  0.376 (0.044) -0.113 (0.025) 0.489 (0.053
Z;=10 - 669  0.247 (0.035) -0.087 (0.024) 0.334 (0.045

(0.025) )

(0.024) )

Austria  Z; =1 6214 0.350 (0.012) -0.077 (0.003) ©0.427 (0.010)
C Z;=0 9220 0.300 (0.007) -0.074 (0.003) 0.374 (0.007)

Standard errors in parenthesis.
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Even if Card and Lemieux’s (2001) conclusions do not regard causal re-
lationships but only observed wage gap between cohorts, these general equi-
librium considerations can justify the violation of the exclusion restriction
in our cases. The lower average education in the 1930-39 cohort, as indi-
cated in Table 5.1, can indeed explain both the positive return to education
for never-takers, individuals always high educated under the two different
assignments, and the negative return to education for always-takers, indi-
viduals always low educated under the two different assignments. Indeed,
the exclusion restriction states the instrumental variable has to have only a
treatment mediated effect. But given our definition of the variables Z; and
Dy, we know that the different educational levels between cohorts are due
only to the compliers behavior. Consequently the value of the instrumental
variable, ‘other than providing information regarding the compliers educa-
tional choices, also gives information on the relative supplies of differently
educated workers in different cohorts. For example considering the individ-
uals born in the 1930-39 period, we know that compliers born in that coliort

will be low educated. Therefore, given the invariant educational behaviors
 of noncompliers, it is reagonable to suppose a decrease in the relative supply
of high educated workers compared to the other cohort (1925-28 U 1940-49).
Consequently it is reasonable to think never-takers would exploit less com-
petitive labor market conditions then increasing their mean outcome, and on
the contrary always-takers would experience worse labor market conditions
then decreasing their mean outcome.
- For Austria, the estimated nonparametric LATE assumes a significantly
different from zero value of -0.3006 (s.e.: 0.0720). Relaxing the exclusion re-
striction produces two nonspurious interior solutions characterized by differ-
ent orders of the means of the mixture composed by not assigned never-takers
and compliers, ¢(D; = 0,Z; = 0). Indeed, we observe fi,5 < fip for E)AUS,]_,
and fl,g > fiy for éAUS’g. Solution @Aus,l is characterized by a more pro-
nounced significant estimated causal effect for compliers (i, — fig: -0.3832)
compared to the LATE, and by a significant positive effect for never-takers
(fip = fing: -+0.0696). For solution €42, on the contrary, the estimated com-
pliers average causal effect (i — fie: -0.3024) is very close to the estimated
LATE, and the estimated noncompliers average causal effects are both not
significantly different from zero. Then introducing the further restriction for
Austria produces equivalent results to estimating the LATE that is based on
imposing the exclusion restriction.
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The choice of the particular solution depends on both statistical evidence
and economic considerations. Solution QA“S 1 obtains slightly better statisti-
cal performances concerning log—hkehhood (-20799.4 compared to -20798.0),
the distance d(@, &) (0.0071 compared to 0.0087), and the AR value (0.9354
compared to 0.9284). Both the two solutions for Austria (like the unique
interior solution for Germany) present a plausiblé order of mean of the mix-
ture composed by assigned always-takers and compliers, ¢(D; = 1, 2; = 1).
Indeed, compliers can be considered more motivated and able compared to
always-takers, individuals never educated from a counterfactual point of view.
- It is then reasonable to think that the outcome mean for compliers is greater
than the outcome mean for always-takers in the relevant mixture. Choice in
the order of means in the other mixture is more problematic; compliers can
be again considered at least more motivated individuals. But never-takers
are always high educated under the two different assignments, SO presum-
ably in better social conditions and then exploiting more advantages and
opportunities inn the labor market. For these reasons the choice of the sign
for the difference (py — ft,9) 18 more questionable, and depends on a deeper
and more specific analysis of the Austrian social-economical context of this
- period. Anyway, the two interior solutions for Austria share a not significant
effect for always-takers, and a negative remarkable effect for compliers.

6 Conclusions

Identification and estimation issues in analyzing a randomized experiment
with imperfect compliance without exclusion restriction have been consid-
ered. The main difficulties in this task are due to the presence of mixtures of
distributions that implies both the partial identifiability of the models and
the possibility to have multiple roots for the likelihood equations.

Supposing the outcome distributions of various compliance statuses are .
in the same parametric class, the model is identifiable unless the equalify
of at least two of the mixing probabilities: w, = we, or w, = w,, or w, =
wy = We This is a set of less restrictive conditions compared to simple
mixture models where identifiability is assured only up to permutations of the
1abel components. Furthermore this set of equality conditions for the mixing
probabilities are easily testable given the usual assumptzons for identifying
causal effects by the IV method.

Supposing normaﬂy d1str1buted outcomes and takmg into account both
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the possibility to 'have multiple roots and the unboundedness of the likeli-
" hood, statistical theory guarantees the efficient estimate can be detect by
the root closest to the method of moments estimate of the parameter vector.
However an unique method of moments estimate can be obtained only by
imposing the homoscedastic conditions for the two mixtures components. In
the heteroscedastic case the detection can be restricted to the root closest to
the method of moments estimate of the mixing probabilities. A simulation
based analysis proves the detection of the efficient likelihood estimate is feasi-
ble when a good mixtures disentaglement of both the mixtures happens. For
computational purposes and for exploiting the particular incomplete struc-
ture of the likelihood an EM algorithm can be easily developed.

An empirical microeconomic example has also been proposed. Supposing’
normal distributions for the outcome, we estimate the noncompliers cohort
of birth effects on earnings (other than the compliers average causal effect)
for individuals born in Germany and Austria between 1925 and 1949. The
microeconommic context has been suggested by a recent paper of Ichino and
Winter-Ebmer (2004).

7 Appendlx A

If (g, e, Az, ) 18 One of the multiple roots for the likelihood equations
based only on the units i € ¢(D; =1, Z; = 1) then

6Zigq(pimz,zi-@1) log flyi, diy 230)/0(N41, Me1) .

. : . Na1=Ma1: N1 =1

where fly;, di, 2;8) is in the parametric class (1). _
A root of the likelihood equations. based on the ent1re sample satisfies
82 log f(")'u di, % )/8(9) =0

7 Z log f(yi, di, 2:;0) + Z log f(¥i, di, z%;@)/@(@) =

gDy, By==1) iee{ Dy=1, By=1}

= (),

this implies
6 Z ) 30% .f(yh d'i} 245 8)/8( Ty Way Way We; Mo o Thats ncO) =0
igs( D=1, Zi=1)
o > log flys, diy 23 8)/0(m,wa,we) =0
i€c(D=1, Zi=1)
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d Z ' Iog f(yz: di: 25 9)/a(na1=ncl) =0

fe((p-i-"‘-l, Ziml)

Consequently (7,1, 1) is 2lso a sub-vector of a oot of the likelihood
equations based on the entire sample. Analogous arguments hold for a root
of the likelihood equations based only on the units i € ¢(D; = 0, Z; = 0).

8 Appendix B
Let’s define the set S{y) as
S(y) = {9 €0|3tz € {al,cl,n0,c0}, n € {1,..., N}, fty, = Y, Otz = 0}

where O is the closure of ©.

Proposition 3 For any i.i.d.  sample (y,d z) of N units, the likelihood -
function L(8) degenerates at every point of S(y):

vy, ve*eS(y)_, 3 (@U“) €0, k=1,2 ) such that limy..., 0% = * and
img—eo (9) o

Proof: suppose that Og1 = 0 or o4 = 0in @". The likelihood can be
written:

L(e) = H f(y’i: d'é: Zﬂg) = H f(yh di: zi;ﬂ:wa:wmnalincl)'

i€c( Dyl Zyuml)

‘ H f(yh dﬁ'a i3 6\?7&1: ncl)- == Ll (ﬂ', Way Wey Mgt ncl')'LQ(B\na}v.ncl)
ighs(Di=1, Z;=1) '

where the first factor of L{8) is the likelihood for a mixture of two normal |
distributions: ' -
L{8) = H [wa - N (Y53 tha1,03) +wer N (yﬁ; 1“‘61’021)] .
its(Dys=1, Zi=1)

This factor degenerates if o,y — 0 and g1,y — ¥Yn, or if 04 ~ 0 and
te1 — Yn, Day(1969). Given Lg(G\nal,nd) does not depends on o,; and
04, this implies the degeneracy of the overall L(8). Analogous arguments
hold if g0 = 0 or oy = 0 in 8%e .
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