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Abstract

The aim of this paper is to propose a solution algorithm for a class of
generalized quadratic programs having a polyhedral feasible region. The
algorithmn is based on the so called “optimal level solutions” method. Vari-
ous global optimality conditions are discussed and implemented in order to
improve the efficiency of the algorithm.
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1 Introduction

The aim of this paper is to study, from both a theoretical, an algorithmic and
a computational point of view, the followmg class of generalized quadratic
problems: -
p. { inf f(z) = ¢(52TQz + ¢"z,d"z)
' z€X={zreR": Azb}
where A € ™" b € R™, q,d € R, @ € RV is positive definite and
X s£ §. The scalar function ¢(y1, ¥2) is assumed to be continuous and strictly

_increasing with respect to variable v1, and is defined for all the values in
(Q x Q) where:

Q; = {yeR: ym}-xTQx—Fqu € X}
D = {yeR: y= dT:r,mEX}

The cons:ldered class of objective functions f(z) is extremely wide and it
covers both multiplicative, fractional and d.c. quadratic functions. Just
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as an example, given any strictly increasing functi'on--‘g'l :Qp — R, any -

positive function g, : Qs — R, and any real function gz : {2y — R, then
the following function f(z) verifies the assumptions of problem P by using

- P(y1yy2) = gr(y1)g2(y2) + g3 (y2) (see also [9]): | |
1@ =0 (35700 + ¢} (4 Vim (@)

“Various particular problems belonging to this class have been studied in
the literature of mathematical programming and global optimization, from
both a theoretic and an applicative point of view ([2, 13, 14, 15, 16, 18, 23]).
In particular, it is worth noticing that this class covers several multiplicative,
fractional, d.c. and generalized quadratic problems (see for all [4, 6, 7, 8, 9,
12, 19, 21]) which are very used in applications, such as location models,
tax programming models, portfolio theory, risk theory, Data Envelopment
Analysis (see for all [1, 10, 12, 17, 19, 24]).
~ The solution method proposed to solve this class of problems is based on
the so called “optimal level solutions” method (see [3, 4, 5, 6, 7, 8, 9, 11, 20,
21, 221). Tt is known that this is a parametric method, which finds the opti—

“rum of theproblem-by-determining the minima of particular subproblems:

In particular, the optimal solutions of these subproblems are obtained by
means of a sénsitivity analysis aimed to maintain the Karush-Kuhn-Tucker
optimality conditions. Applying the optimal level solutions method to prob-
lem P we obtain some strictly convex quadratic subproblems which are in-
dependent of function ¢{yy,7s). In other words, different problems share the

same set of optimal level soluﬁlons and this a,ilow us to’ propose an unzfymg

method to solve all of them, -

In Section 2 we describe how the optzma,l level soiutlons method can be
applied to problem P; in Section 3 a solution algorithm is proposed and
fully described; in Section 4 some results are proposed in order to improve

the performance of the method; finally, in Section 5 the results of a deep
- computational test are provided and discussed.

2 A parametric approach

In this section we show how problem P can be solved by means of the so called

“optimal level solutions approach (see for all [6, 7, 9, 20]). With this aim, let
£ € R be a real parameter and let us define the correspondmg parametrical
- subset of X:

,

Xe={zeR": Ap<b, d¥z=¢}



" In the same way, the foilowing-further-subset of X can be defined:
Ko = {2 €W Az, 6 < dTx < &)

The following parametric subprob},em can then be obtamed just by adding
to problem P the constraint d”z = &

P.- min ¢(327Qz + g7z, )
& xeXg—{:z:eS%”' Az<b, dTz = ¢}

The parameter £ is said to be a feasible level if the set X, is nonempty.
An optimal solution of problem F is called an optimal level solution. Since
By, y2) Is strictly increasing with respect to variable 31, then for any feasible
level & the optimal solution of problem P coincides with the optimal solution
of the following strictly convex quadratic problem ""P"g: -

B, mmzz{:me%—q:U
' lzeXe={zeR": Azx<b, d7z=¢}

Obviously, an bptimal solution of problem P is also an optimal level solution -
and, in particular, it is the optimal Jevel solution with the smallest value;
the idea of this approach is then to scan all the feasible levels, studying the
corresponding optimal level solutions, until the minimizer of the problem
is reached. Starting from an incumbent optimal level solution, this can be
done by means of a sensitivity analysis on the parameter £, which allows us
to move in the various steps through several optimal level soiutions until the
optlmal solution is found (see [9]).

Remark 2.1 Notice that problem P admits one and only one minimum
point since its objective function is quadratic and positive definite and the
feasible region X is closed. Since function ¢{yy, 1) is strictly increasing with
respect to variable y; and is defined for all the values in (£2; x Q2), then the
problem F; admits one and only one minimum point too, the same of Pe.
As a consequence, the following logical implication holds:

€ € R is a feasible level = arg mm fle) £ 0

.’L‘Eg



2.1 Sensitivity analysis: -« eooio

Let ' be the optimal solution of problem Pgr, where d¥z’ = ¢, and let us.
 consider the following Karush-Kuho-Tucker conditions for Pe:

( Qo' +q=ATp+d)
e
Az'<b feasibility @)
<0 o optimality
pP(Az' —6) =0  complementarity
! ,u ceR™ e

Since 155: is a quadratic strictly convex problem, the previous system has at
least one solution (i, V). By means of a sort of sensitivity analysis, we now
aim to study the optimal level solutions of problems Py, 0 € (0,¢) with
- € > 0 small enough. This can be done by maintaining the consistence of the
Karush-Kuhn-Tucker systems corresponding to these problems. Since the
Karush-Kuhn-Tucker systems are linear whenever the complementarity con-
ditions are implicitly handled, then the solution of the optimality conditions

regarding to-Pgryg; 0-€ (Ore) with-e> 0-small enough; is-of the kind:
FO) =o' +0A,, () =p +0A,, )\’(9)': N+ 6A, (3)

It is worth pomtmg out that the strict convexity of problem Py yg guarantees
for any § € [0, ¢) the uniqueness of the optimal level solution '(8) = 2'+-0A,;
this implies also the following impertant property:

vector Afc is umque and differeht' from 0.

Clearly, the Karusthuhanucker cond1t;ons are verified for values of > 0
© such that:

feasibility conditions Az + QAA@I) ,
optimality conditions : u' -+ 6A,<0.

Qur aim is to determine the values of 3;’,'/_\:,3, o Ay, X and Ay By means of '
these parameters it can be computed also the value 8,, = min {F, O} where:

F = sup{f >0: Az’ +0AA,<b}
O = sup{f=0:p +6A,<0}

Observe that in [9] it has been proved that ' and O are positive values
whenever £ < £ps, 80 that 8, results to be positive too.
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Notice that for 8-€ [0,8,,] both the optimality and the feasibility of z'(8)

are guaranteed, so that '(8) represents a segment of optimal level solutions.
Starting from z'{6,,) we can iterate the process determining a new segment
of optimal level solutions. As a consequence, it yields that the set of the
optimal level solutions is nothing but & connected set given by the union of
segments. : :

In [9] various results are given for determining the values of the feasibility
and optimality parameters. In this paper we aim to propose a simplified
~approach for determining them from a computational point of view, taking
into account that the starting optimal level solution 2’ = 2/(0) is known.

Let z’ be the optimal level solution corresponding to the level £ and let
z'(8) = ' + 62, be the optimal level solution corresponding to the level .
& + 6§, with § > 0 small énough to guarantee that 2’ and 2'{§) belong to the
same segment of optimal level solutions. Hence, it is:

z'(8) — x'

Ay = 5

Once A, is computed, the set of binding constraints for ¢ € [0,d] can be
easily determined, so that the complementarity conditions in the Karush-
Kuhn-Tucker system can be implicitly handled.

With this aim, let Ag the largest submatrix of A (made by rows of A)
such that Ag(z’ + 8A,) = bg for all § € [0,4], where b is the subvector of
b corresponding to Ap. Notice that the positivity of § implies that such a
condition is equivalent to the following one: '

ABSEf = bB and ABAx =0

By implicitly handling the complementarity conditions, the Karush-Kuhn-
Tucker system becomes for § € [0, 6] the following one:

~ALps —~d\ +Qz =—g
AB.'H =bB .
dTa:‘ =&+ 0

which can be expressed in matrix form as:

.MB —q

_ =M Q Ap
S| A =1 bz ,WhereSzl },M=[ } (4)
i y 0 M dr

Assuming the rows of matrix M to be linearly independent (which can be
obtained by eventually deleting some redundant rows of Ag), we have that
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- Procedure Parameters(mputs s outputs: Ag, i, Ap, Ny AN FO,8,) o

let § > 0 be the step parameter; sef, f’ =dly:
let z = argmin{ Peys} and set A, icig—?—
. let Ag be the submatrix of A such tha,t Apa! =bg and A/, =0;.

of rank l: 211 } < rows l gT } then delete the redundant rows of Ap;

_ | 4B — —~M" ‘@ ~1.
set M = ' & S = 0 M and compute 57
. N’fB 1 —q A,U.B 1 0
et | N | =8| bg |and | Ay | =510 |;
:E.l' 5[ Am 1

" set Fi=sup{f > 0: Ax’ + AN, <b};
set O :=gup{f > 0: 4+ 0A,,<0} and’ 9 = min {F, O};
end proc.

matrix S is nonsingular (for the positive definiteness of (}). As a consequence
the solution of (4) is unique and is given by:

@] el 8w} [-e] rol
NE) =1 N xe] Ay (=5 b | +051]0
20 | |z AmJ M*J R

Clearly, the parameters p; and A, corresponding to the nonbasic rows of A
are equal to zero. Notice also that the value O can be computed by using
the parameters i and A, only. The described approach is summa,mzed in
the following procedure “Parameters()”.

In the solution algorithm there will be the need to evaluate the objective
function f(x) = ¢(327Qz+¢" z,d7x) along the obtained segment of optimal
level solutions z'(8), 8 € [0,6,,). With this aim, it is worth defining the
following restriction function: '

2(0) = f(2'+6A,)=
= g (%QQA_A + 0N + —;-a:’TQx' + %, ¢ + 6’)
where we took into account (see for example [9]) that from the Karush-
Kuhn-Tucker conditions it yields d* A, = 1, ATQ& = AA, A ATA = {,
AT (Qx +q) N. ‘
2.2 Underestimation function

A key role in the study of problem P will be played by the use of a proper
underestimation function, that is a function 1(¢) which verifies the following
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proﬁer’%y for all the feasible levels &:
min f(z) > $(€)

EEGXé'

In order to determine such an underestimation function fhe following nota-
tions can be mtroduced

= 1/dTQ"id , &u=-d"Q7g
where v is positive due to the positive definiteness of Q).

Lemma 2.1 The following strictly convez quadmtz’c parametric problem

min' $27Qz + ¢"x
d'z=¢

attains the minimum at (&) =€ ~ £&)Q7'd — Q7'q with minimum value
§6) = 37(€ - &) — 367Q g

Proof The minimum point of the problem verlﬁes the following necess&ry
and sufficient optimality condition:

Qr+q =M
ATz =¢

Since @ is positive definite it is also non singular, hence #(¢) = M@ d~Q¢.
By means of simple calculations, fiom ¢ = d'2(€) we then have:

A== "Y(f “‘EU) | _
#E) = 1(6-&)Qd-Q g
. 1, . .
§) = H€)7QuE) +qT(E) =
1 _ 1 _
= Xd'Q7Md-54'Q7 g = (cf €u)” - wq Q7.
o
'The previous lemma shows that it is possible to explicitly determine the
line of unconstrained minima corresponding to problem P, which from now
on will be denoted as follows:

Up={zeR":z=2%(£),£ e R}

The positiveness of 7 implies that function §(€)} is a convex parabola
with minimum value §(&,) = —3¢"Q 'q. The following result suggests a
first’ possible underestimation functlon for problem .
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Theoréem 2.1 Consider problem P. Then, for-any feasible level & it 4gt s w i s

i fz) 2 cb(g( ) &)

zeX,

Pmof Smce the sca,lar functzon o(y1, yg) is strm’aly increasing Wlth respect
to variable 4, and by means of Lemma, 2.1 it results: '

> =
O mewi?z%mgﬂ@

. o4
= min T+ s
e }1%_545( Qz+q z,§) =

= ¢(m6m{fl§},$_§{l 2" Qz + ¢ m} 6) e
= ¢(4(£),¢)
=

' In the case the line of unconstrained minima Up does not intersect the

_ feasible region X the underestimation function can be furthermore improved.

such that {z € R* : v7z ='v§ﬂ:cs} is a support hyperplane for X separating
region X itself and the unconstrained minima line Up, with iz < 'v;*pazs for
all z € X. Notice that:

(Q‘ldf)'L ={ve R v=Mw,we R"}

where - O-lgffo-1
yo g QT
drQ-1Q-1d

is a symmetric singular positive semidefinite matrix such that M 2 = M, with
‘one eigenvalue equal to 0 (and correspondmg eigenvector @~ 'd) and n — 1
- eigenvalues equal to 1 (and corresponding eigenvectors in (Q'd)*).

From MQ~1d = 0 it yields M#{£) = —MQ g for all £ € R, so that given
a pomt x € X it results: -

f | <x<g) — ) = M(-Q"'q~2)

Such a vector v is nothmg but the vector starting from point z € X and
reaching the unconstrained minima line in orthogonal way. To determine
the separating hyperplane we are then left to determine the point z, € X
which is as close as possible to the unconstrained minima line, that is the
one providing the smallest vector M(~@Q g ~ z). In other words we have
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to minimize the quadratic form (M (~Q *g—z))* (M (~Q g~ z)) and this
can be done by solving the following equivalent convex quadratlc pmblem
(recall that M? = M):

L margmm{l T Mz 4+ ¢ Q 1M$}

From now on we can then assume:

= M(”‘Qmiq — Ts)
Notice that from M2 = M and Mz#(€) = ~MQ@q it yields:
viE(€) = ~v;Q7g  and  v[(2(6) - %) = v] s

Clearly, it is v, # 0 if and only if the unconstrained minima line Up does
not intersect the feasible region X. To determine a tighter underestimation
function let us define, in the case X N Up = §, the following notation:

T
Uz v
v=rgeig > O
US.Q_US

Lemma 2.2 The following strictly convex quadratic parametric problem

min 127Qz + ¢z
T =¢
vlz <ol

attaing the minimum at £(&) = £(&) — P(Q”’“lvs) with minimum value §(&) =

&) + ”E""V(UTUS)'

. Proof The minimum point of the problem verlﬁes the following necessary
and sufficient optimality condition:

Qr+q= A+ av,
Az = ¢, vTz <ovlz,
oa(vT:c—v zs) =0
a<l, AeR

Since @ is positive definite it is also non singular, hence #(¢) = AQ™'d —
Q" 'q + aQ 'v,. By means of simple calculations, from & = d*#(¢) and
v € (Q1d)t we then have A = (£ — £,) so that Z(£) = £(£) + aQ *v,.
From the feasibility conditions we have also: '
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“and hence, from v? (2(€) =z} =vTvgy it ylelds e

vg (25 — #(8))

v,

as<? =-v<0

Being o < 0 from the complementarity conditions we get v m(f) = 'vT:cS,
~which yields o = —v and #(£} = 2(£) — v(@v,). Finally, it results

96 = FEETQEE) +d"H(E) =

= 4(6) — vel8(6)) + 50070 — v(aTQ'w,) =

= 5+ H(TQ ) + 5r0Tv.) — Ua Q) = 4E) + 5w,

[
‘-T‘he_proof of the following result is analogous to the one of Theorem 2.1.

Theorem 2.2 Consider problem P and assumne that X NUp = ®. Then, for
any feaszble level § zt 18: '

mip () > 6 (3(6) + ST, ).
As a conclusion, the following underestimation function can be defined:

(€)= ¢ (5(&) + G0, &)
where: e o
0 HFXNUp#0
| P =\ ulo) EXAUp =0
* Notice that in the case X N Up = Bitis .

$ () + 50, €) > 6 (3(6),€)

since function ¢(y1, y2) is strictly increasing with respect to variable gy, v, # 0
and v > 0. Notice also that the continuity of ¢(y;,y2) implies the continuity
of ¥(€). From a theoretical point of view, the previous underestimation
function (&) allows to prove the followmg result which generalizes the one
provided in Remark 2.1. L

Corollary 2.1 G’onszder problem P, Then for any compact interval of fea-
sible levels [£1, &) it results:

ar mm 0 and min  f(z) > min
8, i mf( ) # xexg,h,&]f( )= ge[&’&]w(&)
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Proof Since Xy, ¢, is a closed set and f () is a continuous function, then the
image set (X, ¢,) Is closed too. Since 1(€) is continuous and the interval
(€1, &) is compact, then mingep, ¢, ¥(€) exists. For Theorem 2.1 it then yields

that: o

> Vo € X
flz) > gg%gz]w(s) T € Xy g)

As a consequence, the set f(Xp, ¢} is closed and lower bounded, so that the
result is proved. . 0

From the previous corollary it yields that problem F can be unbounded
only along extreme rays with feasible levels £ going towards +oo or —oo,
while it admits minimum in any compact set of feasible levels.

3 Solution algorithm

In order to find a global minimum (assuming that one exists) it would be
necessary to solve problems P for all the feasible levels. In this section we
will show that this can be done by means of a finite number of iterations,
using the results of the previous section. :

The method scans all the feasible levels looking for Lhe optimal solutlon
starting from a certain feasible level £p. With this aim, there will be the
need of visiting the feasible levels lower than £z in decreasing order. This
can be done by reversing the problem itself, observing that problem P can
be equivalently rewritten in the following form: .

f’:-{ inf f{z) = ¢(} TQx+q:cc(Tx)

P re X

il

where ¢(y1, 1) = d(ys, —y2) and d = —d. In this light, the decreaseness of
" the feamble levels of P corresponds to the increaseness of the feasible levels
of P..

The following procedures “Main(}” and “Visit()” can then be proposed.
Procedure “Main()” initialize the algorithm by determining the set of feasi-
ble levels and a “good” starting incumbent solution, then it uses procedure
“Visit()” to obtain the global optimal solution (if it exists). As it will be
deepened on in the next section, a “good” incumbent solution is useful in or-
der to reduce the set of feasible levels to be explicitly scanned, thus improving
the performance of the proposed method. '

In particular, the optimal level solutions zf and z} are determined in
order to have a good starting incumbent solution. The obtained starting
incumbent solution results to be extremely effective in the case the objective

1



Procedure Main(inputs: P outputs: Opt, OptVal) - G
Compute the values &nin := infrex &7 and &nge 1= smp:ne x Fa :c,
Let gbzg >> 0 and set §§ - ma,x{ gb?,g: 'Smm} 52 = mln{&ng) 5’mam}
Compute z} := arg mm{Pgl} and b = org min{Pe,};

if f(zh) < f(xh) then T = 2 else T :== zh end if;
Set UB := f(Z) and let Ip = {£ € R : A2(£)<b};
if Ip =1 then ¢p = dT sy zp = argmin{ Pe, };
else if Ip N [E1,&] =0 then &r 1= 952, zp = argmin{P,, };

else {p = arg Iﬁg,&]{iﬁ(@} zr = E(Cr);
end if;

end if;
if f(zp) <UB then T := zp and UB f(:cF) end if ;
if & > £p then :
[z, UB] = Visit(P, §F,§ma$,:c UBY);
[z, UB| —stzt(P &y = Epnin Ty UB)
else
[z, UB] szszt(P —&p, —&min, T, UB); :
[x UB] == stzt(P §F,£mm,a: UB) :
' Opt =7 anci OptVal = UB
- 'end proc.

function of problem P is unbounded along a feasible extremum ray. The
starting feasible level £ and its corresponding optimal level solution zp are
- determined taking into account of the possibility to have Up N X = {) or not.

Procedure “ stzt()” scans iteratively the given set of feasible levels ob-
taining the best solution. Notice that “Visit()” uses two subprocedures, the -
first one is procedure “Pammeters()” which has been already described in
Section 3, the latter one is procedure “MinRestriction()” which determines
the minimum of the continuous single valued function 2(f) in the closed .
interval [0,6,,]. Observe that procedure “MinRestriction()” can be imple-
mented numerically, and eventually improved for specific functions f(z) (see
[6, 7, 9, 20]). Notice finally that in procedure “Visit()” there is also one more
optional subprocedure, namely “ImplicitVisit()”, which is aimed to improve
the performance of the solution algorithm by implicitly visiting some of the
feasible levels to be scanned. This optional procedure will be discussed in
the next section. |

The correctness of the proposed algorithm follows since all the feasible
levels are scanned and the optimal solution, if it exists, is also an optimal
level solution.
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Procedure Visit(inputs: P, &r, Emar, T, UB; outputs: Opt, OptVal) .
¢ =Ep; @ = aF; |
#1¢,2] i= ImplicitVisit(€', 2, &g, Talse);
while &' < Eman :
set [Ag, 1, Ay, N, Ay F,O,8,] = Parameters(z'y;
let 2(0) = ¢ (3640 + 60X + 327 Q + 472, & + 0);
set [0, zing) = MinRestriction(2(8),0,8,.));
if Zing = —00 then T := [; UB := ~o00; & 1= 400 else
if %y < UB then ‘

UB = Zinfs . )
if 0= +o0 then T =[] else T := z’ + A, end if;
end if;
set & =& + 6, and 7" 1= 2’ + 0,0
end if; :
# ¢, 2] = ImplicitVisit(£', 2', Eman, true);
end while; .
Opt == T; OptVal .= UB,

end proc.

- It remains to verify the convergence (finiteness), that is to say that the
procedure stops after a finite number of steps. First note that, at every iter-
ative step of the proposed algorithm, the set of binding constraints changes;
note also that the level is increased from & to & + 6, > &, so that it is
not possible to obtain again an already used set of binding constraints; the
convergence then follows since we have a finite number of possible sets of
binding constraints. '

Remark 3.1 Let us point out that problems Py are independent of the func-
tion ¢. This means that problems having the same feasible region, the same
@, g and d, but different function ¢ (either multiplicative or fractional or
d.c.), they share the same set of optimal level solutions. As a consequence,
when procedure “Meain()” explicitly visits all the feasible levels, these differ-
ent problems are solved by means of the same iterations of the while ¢ycle in
procedure “Visit()”.

4 Algor.ithn.i improvements

In this section we aim to discuss how the proposed algorithm can be improved
in the visit of the feasible levels.

13



First of all, let us notice that in the-various iterations of  procedure -
“Visit()” some feasible levels could be implicitly visited in the case O > F.

With this aim, first note that for all § € [0, 0], the value 2(f) is a lower =~

- bound for the parametric problem Py g; in fact if 6 € [0, 8,,] then /() is an

optimal level solution, while if 8 € (F, O] then /() is unfeasible for P5f+9_but '

is an optimal solution of a problem with the same objective function as Fer
-and a feasible region containing Xeip. As a consequence, if the minimum
value of z(8) in the interval (F, O] is greater than or equal to UB then the
feasible levels (F, O] can be skipped. :

Analogously, some more feasible levels can be 1mp11c:1tly visited by using
the underestimation function (§). In fact, given & € [£,&nax) it can be
easily proved that: : :

P 2UBVEe[¢,&] = min  f(z)= _min f(z)
‘ . TEX (gt £mag] ‘ EX (g Ermas)
This property suggests another way to improve the algorithm by reducing in
the various iterations of procedure “Visit()” the set of feasible levels to be
scanned, that is to say by implicitly visiting some of the feasible levels.

= As-a-conclustong-the-following-procedure-“Implicit Visit()? can-bepro-—ww .

posed in order to improve the visit of the feasible levels. Notice that in
the procedure the lower-level sets of function ¢(€) have been denoted wn:h
L($,UB) = {¢ € R: (&) < UB}. |
Fma,lly notice that procedure “ImplzcatV@szt()’ is as more effective as
~smaller is the value UB of the incumbent solution. For this very reason, in
order to improve the algorithm performance it is irnportant to initialize the

method with a “good” starting incumbent solution, as it has been described .

in the previous section.

5 Computational results

The previously described procedures have been fully implemented with the .
software MatLab 7.4 R2007a on a computer havmg 2 Gb RAM and two Xeon

dual core processors at 2.66 GHz.

The following four different objective functions have been used in the

computational test:
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Procedure ImplicitVisit{inputs: &, 2, &nae, tnside; outputs: &, z')
Sott == &';
if € < Eae and (&) > UB then
let £ == [giagmm] B L(@ba UB); '
if £L=0then & = Enap else & = min {L} end if;
end if;
if & < Emox and inside = true and O ~ F > £ — &, then
[0, Zing] = MinRestriction(z(8), [F + & — &5, min{O, &naw — €+ FH);
if Zgg >= UDB then
§i=Eu+0-F
if € < & and Y(&) > UB then
leb £ = (€ émee) 1 L(#, UB);. |
if L= then & = &g else ¢ 1= min {E} end zf,
end if ; :
end if;
end if;
if & < Epax and & > &y then o' = argmin{Px} end if;
end proc.

¢(?f’1:92) — fl=z) |

Pl w-1 | (357Qz+q"x) - (dF a")
| P Y1y (—%a:TQx +g a:) (dT )

Pyl wfyd (%J’UTQC’? + QTH?) / (dTm)
Py | vilog(y:) (a)@m) “log (%mTQ:): o+ qT:L')

where in P; and F; function d¥ z is positive over the feasible region, while
in Py function :cTQw + g%z is positive over the feasible region.

‘The prob}ems have been randomly created; in particular, matrices and
vectors ) € R, g,d € R*, A € R™*™ b € R™, m = 3n, have been
generated with components in the interval [-10,10] by using the “rand()”
MatLab function (numbers generated with uniform distribution). Within the
procedures, the linear problems and the convex quadratic problems have been
solved with the “linprog()” and “quadprog()” MatLab functions, respectively.

For each amount “n” of variables a number “num” of problems have been
randomly generated and each of these problems have been solved for both the
objective functions in P, P, P; and F;. The average number of iterations
and the CPU times spent by the algorithm to solve the problems are given
as the result of the test (see Tables 1 and 2).

In order not to waste time, the complete visit of the feasible levels have
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been tested for dimensions up to n = 50, while the use of procedure “Tm~ .. .

plicitVisit()” have been tested reaching dimensionn = 100. Clearly, in the
case procedure “ImplicitVisit()” is not used (that is all the feasible levels are

explicitly scanned} we provide only the results related to problem P since .

all the problems are solved in the same number of iterations (see Remark
3:1). |

n | num || Complete With Implicit Visit

' Py I P ! P | Py
10 1 1000 24,987 3.874 | 3.920 | 12,124 | 9.839
15 | 1000 39.72 5.545 | 4.283 | 19.103 | 16.148
20 | 1000 53.725 7.325 4.5 25.477 | 22.389
25 11000 68.135 9.108 | 4.783 | 32.465 | 28.784
30 10600 83.0%4 10.586 | 4.841 | 38.017 | 35.666
35 | 1000 99,184 11.406 1 5.3674 | 41.631 | 40.53
40 600 || - 114.46 11.678 | 5.6167 | 43.21 | 46.02
45 | 600 134.63 11.28 | 6.195 | 44.662 | 51.573
50 | 600 || 158.65 11.517 § 7.0617 | 47.462 | 57.552 |

100 | 400 - 15.01 | 15.008 | 55.3 | 165.14

Table 1: Amount of iterations

The obtained results point out the effectiveness of the improvements pro-
posed in Section 5; in particular, the performance is strongly improved for
problems Py and Py, for both the number of iterations and the spent CPU
time.

6 Conclusions

The proposed algorithm allows to solve & wide range of nonconvex problems.
The computatmnal test shows that it is possible to efficiently handle problems
with up to 100 variables. In particular, the improvement criteria suggested in
Section 5 resulted to be extremely effective in making the algorithm efficient.

Further imiprovements could be based on the study of the quasiconvexity
of functions f(z) and (&). The quasiconvexity of f(z) suggests to stop the
algorithm when a local minimum is found, while the quasiconvexity of ¥(£)
makes the condition 1{£') > UB a global optimality condition and a concrete
stopping criterion. In this light, notice that if f(z) is quasiconvex then
(€) is quasiconvex too. Improvements could be obtained also by iteratively

6

60 | 600 - 10.808 | 9.13 | 48.792 | 74.19
70 | 600 - 11.29 | 8.655 | 50.252 | 93.698
80 | 600 - 1L72T | 10.468 | 51.43 | 116.93
g0 [ a00 | e 13402 | 12,285 | 56.083 [FTdo.03 [T T e



n’ | num || Complete ||~ - With Implicit Visit

. o P; [ P;g i P3 ; P4
10 11000 (| 0.90392 | 0.64764 | 0.68338 | 1.0331 | 0.92926
15 | 1000 1.8236 0.84843 { 0.79404 | 1.5577 | 1.4047
20 | 1000 12.747 2.68592 - 1.9633 | 7.2688 | 6.4555
25 | 1000 21.04 4.1972 | 2.745% | 11.63 | 10.322
30 | 1000 33.285 6.1779 | 3.7045 | 17.205 i 15.966
35 | 1000 60.252 10,051 | 5.9661 | 28.141 ; 26.716
40 | 800 890.185 13.284 | 7.9423 | 37.125 | 37.893
45 | 600 135.08 16.888 | 11.088 | 48.872 | B53.576
50- | 600 195.65 21,374 | 14.843 | 63.532 | T1.894

60 | 600 T 29563 1 25.292 | 93.901 | 129.16
70 | 600 - 42.358 | 34.813 | 133.51 | 217.86
80 | 600 - 57.579 | 52.35 | 177.72 | 346.28
90 | 400 - 82.368 | 74.708 | 244.82 | 518.6
100 | 400 = 114.04 | 110.88 | 307.25 | 758.13

Table 2: CPU time

updating the underestimation function (¢) over the feasible subset X (€ Emas]

which remains to be visited. :
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