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Abstract

In this paper a hierarchical workforce model is studied from both a theo-
retical and an algorithmic point of view. In the considered model workforce
units can be substituted by higher qualified ones; external workforce can also
be hired to cover low qualified jobs. A multilevel algorithm is proposed to
solve the problems and its efficiency is analyzed by means of cut conditions
and discrete convexity properties. Finally, the results of a computational test
are provided.
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1 Introduction

The general fleet size problem can be summarized as follows: how many
vehicles should a firm have in its transport fleet to meet a fluctuating work
load? And which should be the optimal fleet mix?

The study of this kind of problems is an important topic of management
science because of their practical applications (see for example [1, 3, 5, 7).
Emergency medical services involve decisions about the optimal fleet mix.
In fact, ambulance services can be divided into categories according to the
urgency of the requests, according to the need of a doctor on board, according
to the equipment installed in the vehicle.

Two more examples are the need for a firm to decide how many internal



and external technicians to employ, and the need for a transport company 1o
determine the optimal number of trucks to own with respect to their storage
capacity. '

A critical market factor for each firm is also its capability to respond
to customer requests not too late. In particular, service firms often have
contractual constraints that force them to respond to the demand of service
within a time window. In the case of uncertainty in the demand for services
there is the need to cover the peaks at a reasonable cost.

These kinds of problems are said to be hierarchical when the fleet is
heterogeneous and the relative units can be grouped in hierarchical sets ac-
cording to different capabilities or peculiarities (see for all [1, 5)). An example
of hierarchical fleet mix is the optimization of vehicles that can transport dif-
ferent kinds of goods, such as edible and non-edible goods. In facts, stainless
steel vehicles are able to carry both types of goods, mild steel ones can only
carry non-edible liquids.

In general, these are nonlinear mteger problems, since the objective func-
tion is made by nonlinear penalty functions Whlle the variables are integers
since they represent fleet units.

Tn this paper a class of hierarchical fleet mix problems is studied from
both a theoretical and an algorithmic point of view. In particular, we will
point out that these problems can be efficiently solved Wlthont the use of any
heuristics, so that the global optimal solution is guaranteed.

2 Definitions and preliniinary results -

In this paragraph a hierarchical programming model is proposed. Three
different formulations are considered, according to the complexity of the fleet
mix. The first one considers an homogeneous fleet, divided into internal and
external employed units, the second and the third formulations, respectively,
consider two and three kinds of internal employees, with different capabilities.

The aim is to prove that, using a parametric approach, the problems can
be solved hierarchically by means of the ones having a smaller number of
© internal employees kinds.



9.1 Problem P®

The first model PY determines the best fleet, composition in order to guaran-
tee a certain service level (that is the number of daily fulfilled requests) and
a reasonable labour cost (related to both internal and external units). For
this reason the model considers a variable z1, that is the number of internal
units, and a vector z = [#] where z; represents the number of external units
employed at day ¢ € {1,...,n}. We assume that each external employee can
satisfy only one request in a day. On the contrary, every day each internal
employee can respond to a number of requests equal to Gy, . :
A detailed structure of the mode is given in the following definition ().

Definition 2.1 Let PO = PO (M®M, uM k) be the following problem:

P(l) f min fM (2, 2)
' (z1,2) € 5%

where k € %, uV, M € 2%, by € Zy, By € 2, U{+oo}, with 0<p® <MW,
0 <b <Band

' n 7
'f(l)(:nl, z) =k +ncg, Tt +Co Zn + Copy Z w§1> (x3, %)
: =1 i1

(1}(503,%) max{O;Mi(}”)——/ﬂzlmlmzi} Vi=1,...,n

(z1,2) € Zy x ZT such that
S = ,ugl) < By +zVi=1,...,n
' b <y < By

with By, € Z4y and Cpy, €z, Coy € Ry

The objective function is composed by three cost factors: the cost ¢z,
for any single internal employee, the cost ¢, for any single external unit, the
penalty cost ¢,,. The constant value k can be interpreted as a fixed cost.

In particular, the cost c,, represents the penalty marginal cost, that is

the cost of the shortage of workforce, while max {0; Mz-(l) e By X1 — zz} is the

'From now on we denote with Z the set of integers, with Z the set of nonnegative
integers and with Zy. the set of positive integers. Analogously, R is the set of real
numbers, R is the set of nonnegative reals and . is the set of positive reals.

3



number of not fulfilled requests in each day i € {1,...,n}. Notice that the
parameter M, (1) is the maximum number of requests at day 4 € {1,...,n}.
Parameter ,u( D is used to provide quality of service constraints. In parmcular
these constraints guarantee that the global number of employed units is able
to cover, each day i € {1,...,n}, a number of requests greater that ;Jé )
Finally, notice that b represents the minimum number of internal units while
B, is the maximum number of internal employees which can be hired.
The following theorem states an upper bound for variable z;.

Theorem 2.1 Let (z1, 2 2) be an optimal solution of problem P and let
max {M {1}}

. i=1,.
241 = min , By

By

Then, it is by < 1 < Uy,

Proof First notice that from 0<u™M <MW it yields that for all b € Z,,
for all z € Z%, and for all i = 1,...,n, it Is:

(up +h,z) € S and w(l) (uy + h, 2z) = 0. (1)

. Being z; € Z, we just have to prove that 331 < u;. With this aim, let us
suppose, by contradiction, that the optimal solution (%1, 2 %) € S of problem
PM) is such that 1 = uy + h, with b > 0. Taking into account of (1), we
then get: ‘
fO(E,2) 2 FOEL0) > f (u, 0)

and this is a contradiction since P is a minimization problem and (uy, 0)
is feasible. The result is then proved taking into account that z; < B1.

Tn order to find the exact optimal solution, a parametric approach is used.
Setting variable z; fixed as a parameter, an explicit solution for the vector
z, depending on the value of z;, can be stated.

Theorem 2.2 Let us consider problem P and assume z € [by,u1} to be a
fized parameter. Then, the optimal value %i(zy) of variables z;, t=1,...,n,
8 given by:

oy { ™ {o; MY - @1@} if ¢y < Cuy
ZilTy ) ™=
z max {O; Mf;]‘) - ﬁmlml} if Cx > Cupy



and the corresponding penalty value is

(W, i 0 | e S e
w; (331_,%'(931)) =\ max {0; MY~ max {ﬁml’zﬁuil}}} if ¢z > Cuy

Proof By means of the same lines of the proof of Theorem 2.1 it ylelds:
max{0; p = By} < Afx) < max{0; MY — By 21}

From the definition of function ¥ (z,, 2) we get:

n _
Yz, 2) = k + neg,z1 -+ ¢, Z(z2 + w2y, 7)) + cw1 - Z w (21, %)
jmm}

Hence, noticing that for all ¢=1,...,n

zz+w”(£a,zz) mex{z; M{" — Bo,m1}

and recalling that Z{z;) < max{0; Mi(l) - ﬁmlml}, it is:

FO(a, )——mcm—f»czZmax{o MO =21} Hom—e) 3 01, 2)

i=1 _ i ],

The result then follows noticing that if ¢, < Cy, then function w( }(:rl, z;) has
to be minimized by choosing the blggest suitable value for z, if ¢, > ¢, then
function w(l)(a: 1, %) has to be maximized by choosing the smallest suitable
value for z. If ¢, = ¢y, then FO(xy, z) is independent to z; in other words
the cost of the penaity is equal to the cost of technicians z; for marketing
purposes it is better to avoid penalties, so that the biggest suitable value for
z can be chosen. The value of the penalty function follows trivially. 7

‘The previous results allow to solve problem PO} by means of the following
single variable problem:

sy [ min oz =z, 2(2))
d { b <z < 2)
where 2(z1) = (& (1), .., 2n(21)) I8 givcn in the previous theorem. In other

words, problem PU) can be solved by simply comparing the values of (,o(ml)
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for all z; € [b1, 4] and then by determining the optimal value 2(z1)}, as it is
described in procedure “MinP™ ().

Procedure MinP) (inputs: ... ; oulputs: 7, 2%, val*)
Compute uq;
# optional: update u, by means of UB,
if by < uy then
Determine 2{z;) and ¢(z1);
= MinDiscr(¢, bi,u);
z* = 2(z}) and val* = ¢(z});
end if;
end proc.

Notice that a subprocedure “MinDiscr(¢, by,u1)” is used in procedure
~“MinP®()” in order to determine the minimum of function ¢ for the inte-
ger values in the interval [by,u;]. The way this subprocedure can be imple-
mented will be discussed later in order to improve the efficiency of the solution
method. Notice also the use of the global variable UB in the optional step

of procedure “MinP()”; this will allow to improve the performance of the
method, as it will be discussed in Subsection 3.2.

2.2 ‘Problem P

The second model P® considers two different kind of internal units: z; and
z5. This model belongs to hierarchical fleet mix problems, where the fleet
" can be divided into two hierarchical classes according to their characteristics.
The units belonging to the most qualified class (denoted with 2) can answer
to all the Tequests, the other ones (denoted with 1) can answer only to the
requests asking for a lower qualification. As a consequence, the model struc-
ture involves an additional variable z, related to units that can fulfill both
the requests of type 1 and type 2. Two differerit constramts are then needed
{0 manage the different levels of requests.

Definition 2.2 Let P® = P (MDD, M® 40 42 k) be the following
problem: :
P min 1 (1, 29, 2)
' ($3,$2,Z) & S(Q)



where k € ®, g, 1@ MO M@ ¢ fo:, bi,by € Z, By, By € Z; U {0},
with 0<pM<M®, 0<pP<M®, 0 < by < By, 0 < by < By, and

n
F@ (21,0, 2) = k + 1 (Coy @1 + Cay0) + ¢ ) zh
g

ks n o
+ Cun Z wa{l)(-’l?h Ty, 2i) -+ Cup Zwég) (@2)
fe=l e

wf? (@) = max {0; 4 — Besa)
wgl)(ml, To, 2;) = MAX {0; Mi(l) - ﬁmlcci ~— 2z + min {.0; Mz-(g) - ﬁm2$2}}
(T4, 29,2) € Z4 X Z4 X fo, such that

D) < By Vi = 1,
)

W+ ;uf) < By + Bap®o + 2 V? =1,.
by<z < By, by <z < By

with ﬁm;aﬁwz S Z—{:+ and Crys Cay Cupy € §R++ '
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The differences between problem P1) and P® can be summarized as
follows. The objective function of P has two additional cost components:
the cost of 2, units and the penalty costs for request of type 2. As far as the
penalty costs is concerned, the type 1 penalty cost depends on all the kinds
of fleet units, the type 2 penalty cost depends only on zs.

An interval of variation for z, is determined in the following theorem
which can be proved analogously to Theorem 2.1.

Theorem 2.3 Let (z1, T2, 2) be an optimal solution of problem P2, Then,

Lo & [lg , UQ] where:
o (4%}
il e,

, b
By ?

o = max

o (M + M7}
Uy = min L , By

Gz,

The following theorem states the equivalence between problems P®) and
P(z) when z, is fixed as a parameter.



" Theorem 2.4 Let us consider problems P and P and let Zp € [ly, ua].
Then,

2) o @ M @
PO (MO, MO, 0, 4P k)|

= pW ( Fr0 A)
where for alli=1,...,n it is

I\Z’.(l) = max {0; M-(l} + min{o; Mi(z) - ﬁm@}}
,ug ) = max {0 M{z) + MSQ) ﬁmf?}

ic k + nce,To + chZmax{O M{) ﬁmz’ﬂg} ‘

fe=]

It results also that 0 < [ ”(i < Mi(l} Yi=1,...,n

Proof First notice that problems P and P‘? given in the assumptions
share the same feasible region; with this aim notiee that, being (21 +2; > 0
Vi == 1,...,n, in the case ,u.fl} + ,u(g) Bz, %2 < 0 the region is not affected
by the fa,ct that [t "(1) is fixed at 0. Problems P and P® share also the
same objective functlon, with this aim notice that, being —Gpz1 — 2 < 0

Vi = 1,...,n, in the case M{ ) + min {0‘ M(z) - ﬁmsz:g} < 0 the penalty

function w( )i equal to zero and this value is maintained when M 1) 3¢ fixed
at 0. Let us finally prove that 0 < ﬁ{l) < M Wy = 1,...,n. With this aim,
first notice that in the case M, 1) + M; @) < By, 2o it is M W = ugl) = ) since
0< it < M( Y and 0 < u(z) < M(Z) Assume now M(l) M(z) > BuaTo;
from M, W > 0 it yields that

Mi(l) = max {O; Mi(l) + min {0; Mfg) - ﬁxziz}}
= max {O; min {Mi(l); Mi(z) + Mi(z} - ﬁmzﬁfz}}
in { M}”; M}” + M@_@) _ ﬁngz}



As a consequence, it results
M — i = min {M-{l}' M-{l} +MP -, -’32} max {0 p 4 - BmzféQ}
== min {M(l} M{]} M(Q) ﬁmzwg} + min {0 ,u(l} ,u,gg) + ﬁmf:g}

. MM = — 1) 5 5
= mln{ iMr(l) M(Q) 2] = ,;W(Q) ZM{l) i %1) {2) >0
i w32y My + i Ty
being .“7(;2) < B, o, Mi(l >0, Mi{l) > ,u,gl) and Mi{g} > ,uﬁ ), o

The previous result suggests to approach problem P® by iteratively solv-
ing the equivalent problems PO for 7y from lg to ug, as it is described in
procedure “MinP® ()",

Procedure MinP® (inputs: ... ; outputs: 3, x4, ¥, val*)
Compute uy and Iy ;
# optional: update u; by means of UB;
'Ef lz < U9 then .
set o 1= Iy and val* = +00;
while To < Us
compute M®, 5D, k;
[z}, 2/, vall:= MinP® (MO, g0, k),
if val' < val® then
xy =gl xh =Ty 2F =2 val® i=wvaly
# optional: UB = val*, update up by means of U B
end if;
Foi= Fo +1;
end while,
end if;
end proc.

The use of the global variable UB in the optional steps of procedure
“MinP@ (), aimed to improve the performance of the method, will be dis-
cussed in Subsection 3.2.

2.3 Problem P®)

The third model P® considers three different kinds of internal units: z:, 23
and z3 according to three different levels of requests. Type 3 fleet units can
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fulfill all the three kind of requests, type 2 units can answer to requests of
the first and second type, type 1 and external units can satisfy only type 1
requests. The model is formulated as follows. -

Definition 2.3 Let P® = P® (MO, M M® 0 42 43 k) be the
following problem:

. P(3) . min f(g) (:Ei) Tg, X3, 2)
b ' ($1,$2,$3,z) & 8(3)

where k & §R, H’(i}’ ,u'(g), @(.3)}M(1))M(2), M(S) & Zm?ui bla b23 b? € Z—i~> Bl:B%lBB &

Z, U {+oo}, with 0<pu@<M®), 0<u@<M®, 0<pu®<M®, 0 < by < By,
0 < by < By, 0< by < By, and

n T
' 1
FO (@1, 29, 03, 2) = 1(Cay T1 + Coy T2+ CugTs) 4 Cx D %+ Cuy 9 WL (1,72, Ty )+

i1 fm=]
| i 2 ~ 3
e S wP (@, w5) ey Yl (zs) +
jmml i=1

| wgg) (z3) = max {O;Mi(g) - 53:3503}
wgz) {xq,z3) = max {0; Mi(z) — By, % + min {0; Mi{?’} - 5m3$3} }

(1) ‘ { 0 M7 ~ a1~z }

Wy (2,22, @, ) = max + min {0; M — fgyzo + min {05 M - 53:3503}}

(Ty,Zo, %3, 2) € Z4 X ZN,_ X Zy x Z% such that )

| B < Bz Vi=1,...,n

S(B);< o u§2}+u§3)§ﬁxza¢2+ﬁm3w_3 Viw1,...,7 ;

#u’gi} + /’57(;2) + JU/ES) < ﬁmxl + /6.'232552 + ﬁm3x3 +zVi=1,...,7
by <z <By, <2< By, b3S x5 < By

- 7

The following theorefn, which is analogous to Theorems 2.1 and 2.3, states
a lower and an upper bound for variable x3. |
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Theorem 2.5 Let (21,79, T3,2) be an optimal solution of problem P®). Then,
z3 € {l3,us] where:

—_
Jnax e
I = max { | =} by
Bes
me L+ P + M0
. iz=l,..,70 .
ug == min ; , By

B

As mentioned in the introduction, one of the aims of this paper is to
establish the equivalence between the three presented formulations. Since the
equivalence between P and PU has been proved in the previous section,
it is sufficient, here, to prove the equivalence between P® and P®).

Theorem 2.6 Consider problems P® and P® and let &5 € [l5,us). Then,

p® ( MO, MD p® 0,2, ;ﬁf”,k) = p® ( MO 5, 50 5@, ;,,)

T3 w= I3
where for alli=1,...,n i s

'Mi(g) = max {O; Mz-(z) + min {0; Mi(?') - 5&:353}}

Mi(l) = max {0; Mi(l) + min {O; Mi(z} + min {U; Mi(s) - ﬁmgfis} }}

AP = max {G;.,ugz) + - ﬁm'f‘g}

,[j,gl) = max{o; ,(,Lél} -+ min {0; ,U;t@} ol ,Uég} - /6’9;3533}}

k ==k -+ nCuy 3 + Cug im?ﬂi {0; M ﬁmsf?)}

el

It results also that ]%2) > ;:z§2> >0 andlMi(l) > ,il,(;l) >0Vi=1,...,n

11



Proof First notice that problems P® and P®) given in the assumbpions
share the same feasible regzon With this aim notice that, being fF;,z2 = 0

Vi=1,...,7n in the case ,u,( ) ~ BesTa < 0 the region is not affected by

the fact that “( ) is fixed at O. The same observation holds for u(l)
Problems P(3) and P@ ghare also the same objective function; with this
aim let us consider two different cases:

) if M, @ 4 mén-{O‘ M; ®_ ﬁmﬁg} > 0 the equivalence can be stated by
settmg M{l} M(l) and M(z) M(g) -+ min {O M( ) _ 5m3:“1":3}
2) if M, ® 4 min {O' M, & _ ﬁmcﬁg} < 0 the equivalence can be stated by
setting M(l) M(l) + M(?) + min {0; Mi(s)w ﬁwsa":g-} and Mi@) =0
Let us now. prove that M @ > [L(?‘) > 0Vi=1,...,n With this aim,
first notice that in the case M; @ 4 M; ® < BuyEs it 1S M @) = ﬁ(g) = () since
M; @ > ,!JJ(Q) > 0 and M, @) > ,u(S) > (. Assume now M, &) M1-(3) > PusTa;
from Mfz) > 0 it yields that ‘
Mi{g} = max {O; Mé(z) + min {O; Mfg) — ﬁmssﬁg}}
== 118X {O; min {Mi@); Mz-(z) + Mi(a) - ﬁ,cS:T:g}}
= HN {Mi(z); Mi@) + Mé(g) ~ [ 3733}
As a consequence, it results

Mi@) - ,&2(2) = min {M(g) M(z} M(3) By mg} max {O ”(3) + ,u@) - &;35&3}.

1
== N {M(g) M(z) + M(3) o ﬁxs’ﬂg} + min {O ,u(s) ( 2 +ﬁm xa}

o M M(z) I J N .
IR I 7 M(s — BuaTs M(2) + M{s) 48 @

being ,u( ) < BesZs, M(z) > ,uJ ) and M(3) > ,u 3,

Let us now prove that M M > ﬁ.(i ) >0 Vi=1,...,n With this aim, first
notice that in the case M(l) +M(2) +M(3) < Br Tz it is M( ) s ,u{g) = () since
MY > 8 >0, MP > WP > 0 and MF’) > ,u53) > 0.
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Assume now Mi(l) + Mi(z)_ + Mi(g) > ,Z3; from .M;-(l) > 0 it yields that

1" = max {0, (Y + x;éin {0;2 + min {0, M — B35} |}

= maxc {0 M 4+ min {05 ain { 10 P 4+ M — po,35} } |

- ma.x{o min {M< ). min {M( o+ MP O 4 M M 5m3ﬁ3}}}
= min { M mmin { a1V + M 4 MP + MO - Bz}

= min { MO0 + 1 4 4P~ B30

,ag” = INax {O;‘ug + min {6 p ,ut ‘,8 .‘233}}
= INAxX {(}; min {p&i ),ugi) + Mz(z} + ,Ué = )69:3$3}}

As a consequence, it results

MP — @ = i { MY 4 @ 4 u® - ,6’3:3:%3} +
— max {O; min {,uuil}, ,u,gl) e u(z) -3) - ﬁxsfﬁs}} =
= min { M 1 + M+ uf) - Buya | +

+ min {0; —min {,LLE ), ,ut(l) (2) 4 ,ugs) - ﬂmsig} }
and hence Mi(z) ( ! is equal to:

M,
M(}) min {,ugl),,ugn + ;452 + “53) - ﬁmafg} ;
MY+ M+ M - 6,7

M'L(l) + Mfz} + M'!,(B) - ﬁxsjl’: ~ min {U)gl)?ﬂgl + Ju'zz} -+ “53) - ﬁ.‘cs‘;ﬁ?)}

min

noticing that M(l) > ,u, M(2 > ,(1,(2} M(3) > ,u, ) and M(?‘ MZ-(Q) -+
Mi( ) Bey3 > 0 by assumptmn. : .
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The previous result suggests to approach problem PG by iteratively solv-
ing the equivalent problems P® for z5 from I3 to us, and then using the equiv-
alence between P2 and P, as it is described in procedure “MinP® ()"

Procedure MinP® (inputs: ... ; outpuls: =}, 23, x3, 2*, val®)
Compute ug and {3; | - _
# optional: update uz by means of UB;
if I3 < ug then ’
set Ty = I3 and val* = +o00;
while Tz < ug '
compute M), g0, K@, 1@, F;
[z, 25, #, val]:= MinP® (MW, j®, M@, 52, k);
if val' < val* then ’ '
o¥ == gl 4= ohy 1 = By 27 o= 2 val® = wval’;
4 optional: UB = val*; update us by means of UB;
end if;
Fgi== fg' —'E‘].,
end while;
end if;
end proc.

The use of the giobal variable UB in the optional steps of procedure
“MinP® ()" will be discussed in Subsection 3.2, |

3 Algorithm improvements |

: ,_
The aim of this section is to study some results aimed to improve the per-
" formance of the solution method presented in the previous section. This can
be done both studying theoretical properties of function ¢(z;) and stating
better bounds for variables x1, o and z3.

3.1 Discrete convexity of ¢(z;)

In procedure “MinP™)()” a subroutine named “MinDiscr()” has to be used

.in order to minimize function ¢(z;) in the interval [b1,u1]. This can be done,
for example, by evaluating function ¢(z:) for all the u; — by +1 integer values
of the interval [b;,u;]. A much more efficient technique can be used in the
case function ¢{z,) verifies some generalized convexity property.

14



With this aim, let us recall the following concept of discrete convexity.
‘introduced and studied by Cambini-Riccardi-Yuceer in [2] (see also [4, 6, 8]). .

Definition 3.1 A set X C Z is said to be a discrete reticulum if
([z€ Z :min{z,y} <z<max{z,y}} CX Vz,ye X

Definition 3.2 Let f : X -+ R, where X C Z is a discrete reticulum.
Function f is said to be a discrete convez function if for all z € X such that
z+leXandor—-1€ X, itis

fla+D)+ flz—1) > 2f{=) | (3)

The two following fundamental results follow directly from the previous
definitions.

Theorem 3.1 Let f: X — R, where X C Z is a discrete reticulum. If f is
a convex funciion over the conves hull of X, then it is also discrete conver
over X. ' -

Theorem 3.2 Let f,g : X — R, where X is a discrete reticulum, be two
discrete conves fanctions and let o € R, a > 0. Then, (f + g)(z) and of (z)
are discrete convex functions.

For the sake of convenience, it is worth providing the following charac-
terization of the discrete convexity concept.

Theorem 3.3 Let f: X — R, where X C Z is o discrete reticulum. Func-

tion f s a discrete convex function if and only if the following property holds:
B — - fz—Fk) o

Proof Noticing that (3) follows from (4) by setting & = h = 1, we just have

to prove that if f is discrete convex then (4) holds. Let us first prove, as a
preliminary result, that the discrete convexity of f implies:

fle+h)—flz+h-1)> fla+1) - flz) YA=1 (5)
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This property is trivial in the case h = 1, whlle for h.> 1 condition (3}
implies:

Flath) - ‘(mmwl)]w[f(a:ﬂ)-f(:c)]:

= Y {l[fz+i+ D)= flz+ )~ [flz+5) — fla+i- 1}
h—1
=) [fle+i+ D)+ fm+i—1)=2f(z+)]20

Notice also that from (5) it yields:
flo)=flz—-1)2 fle—k+1)~ flz—k) Vk=1 (6)

Conditions (5) and (6) allow us to prove that:

l
ﬁﬁ#

fle+h) = fz) = 3 (fla+5) = fle+5-1) 2 Mf(z+1) - £(2)

i

.
il

f(z) = fla—k) =

NE

(fle—7+1)~ fle—75) < k(f(2) - ﬂm“U)

.
i
—_

As a conclusion, the discrete convexity of f implies:

ARG 5 o) - 1) 2 f0) - Sl 1y 2 HELEZE
so that the result is proved. 3

The previous characterization allows us to state the following properties.

Theorem 3.4 Let f : X — R, where X C 7 is a discrete reticulum, be a
discrete convex functzon and let zg € X such that Zo +1 e X. The following
properties hold:

i) if flao) < Flzo + 1) then f(z) > f(zo) Vz € X, 2 > o/
i) if f(zo) > flzo+ 1) then flz) = flao+ ) Ve e X, x Szo+1;
i6) if f(z0) = (o +1) then f(z) > f(wo) Y € X.
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Proof i) Assume by contradiction that there exists y € X ,‘y > xp, such that
Fy) < flmo) < f(zo+ 1); hence y > zo + 1, so that (4) implies:

@) = Fo+1) o floo+1) = f(a)
y—Zg— 1 - 1

Since f(y)~ flzo+1) < 0 and y—zo—1 > 0, it follows f{zo+1)— f(zo) <0
which is a con‘rradlc,tzon
The proofs for i) and iii) are analogous 0

Notice that these results imply the giobal optimality of local optima.

Corollary 3.1 _Lét f: X - R, where X C Z is a discrete reticulum, be a
discrete convex function and let zg € X. If the following condition holds:

flzo) £ flz) Yre{zo—1Lz+1InX

t

then, zq is an global minimum for f over X.

The following result related to the discrete convexity of function ¢(z;) in
problem P can now be stated.

Theorem 3.5 Consider problem P and function ¢(x,) as defined in (2).
~ Then, function ¢(z1) is discrete conver.

Proof First notice that

o(@1) =k +ncgy oy + sz(azl) ' ' (7)

f=]

where’ ‘ 1
(E) = gilm) + el (@, 2(m)). (8)

Taking into account of Theorems 3.1 and 3.2 and noticing that k 4-ncy, ) is
trivially a discrete convex function, by means of (7) it is sufficient to prove

that for alli = 1,...,n functions v;{z;) defined in (8) are convex, and hence
“also discrete convex. Two exhaustive cases have to be considered. ‘
(Case ¢; < ¢,) Let i € {1,...,n}, by means of simple calculations we get:

. — Cz(Mz(l) o J@m;ml) 1f ﬁmlxl < Mz(l)
Tib’b(:]:l) - 0 lf ﬁm 1 ~ M{]‘}
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which results to be convex and continuous over R being ¢, > 0'and Gy, > 0.
(Case ¢, > ¢y, ) Let i € {1,...,n}, by means of simple calculations we get:

i = o) + ew(MP — ) i By < Y
Pi(zg) = cw(Mi(l) = BuyZ1) if Mgl) < Buz1 < Mz-(l)
0 . if )8561-'31 = Mi(l)

which results to be convex and continuous in R being ¢, > cwfe, > 0.

By means of Theorems 3.1 and 3.5, the minimizer of ¢(z;) in the interval
[b1, 4] can be obtained in O(uy) steps just by computing the values ¢(z:) for
71 from by to uy until a local minimum is reached. Actually, since the interval
" to be scanned is bounded, a faster logarithmic procedure based on a sort of
bisection method is proposed in the following procedure “MinDiscrConv(}”.

Procedure MinDiscrConv{inputs: f, m, M ; output: ris)
Let a :=m and b := M, ' ‘
while a < b do

letc:= | %2
if fle+1) < flc) thena:=c+1
elseif flc+1) > flc) thenb:=c¢ .
else g :=cand b :=c '
end if;
end while;
7S = O
end proc.

The correctness of procedure “MinDiscrConv()” follows straightforward -
from Theorem 3.4. The logarithmic complexity yields noticing that in every
iteration the current interval is divided into two equally long subintervals. It
is worth also to point out that in every iteration of the while cycle two points
are evaluated, that are ¢ and ¢+ 1.

3.2 Tighter upper bounds

As it has been described in Section 2, a key role in the solution procedures
“MinPD()?, “MinPP()” and “MinP®()”, is played by the values of the
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bounds [63,11,1], (13, us] and [l3,us), respectively. This happens since the pro- = =~

cedures have to iteratively analyze all the values of variables z;, zo and 3
within those intervals. In this light, the performance of the solution methods
can be improved by stating tighter bounds for z;, zo and z3. This can be
done by using a global variable UB corresponding to the value of the incum-
bent solution; in facts, such a global variable allows to improve the upper
bounds as described below: '

. { UB—k }
Wy == 1N 4 U -
L Ty
: { UB -k }
U = O 4 Us,
' | Ny, |
. { UB~k }
Ug = M4 Ug,
| MCqy

These formulas are based on the fact that there is no need in procedure
“MinPV ()" to continue the visit-of 27 in the case f”)(xl Z) 2 kA ncy, T =
UB, and similarly in “MinP®()” and “MinP® ()” whenever f®(z,, 20, 2) >
k4 neg,ze = UB and f8(wy, 20,73, 2) = k 4 ncg,w3 > UB, respectively. -
 These updating assignment commands can be used in the optional steps -
of procedures “MinPM()”, “MinP? ()" and “MinP®()”, which have been
already described in Section 2. Clearly, in the case the updated value of the -
upper bound gets smaller than the value of the lower bound, the procedure
stops since the feasible region does not allow to find a better incumbent
solution.

4 Computational results

In this paragraph the simulation results are presented. The procedures have
been implemented in MatLab 7.4 rev.2007a and the test has been done with a
MacOSX 10.4 computer with a dual core Core 2 Duo processor at 2.16 GHz,
For each category 1000 instances of problems P®) have been generated by
using the “rand{)” MatLab function. For the sake of concreteness, the cost
parameters have been generated according to a hierarchical cost structure,
that is ¢y 2 Cpyp > Cp, and Cpy 2 Cw, 2 Cuy. Every genemted problem
has been solved by using no improvements (“None”), only one improvement,
(“Conv” and “Bounds™), both improvements (“Conv & Bounds”).
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In the first computational test we fixed the variation intervals of Mi(j )
and ,ugj » and we investigated the algorithm efficiency varying the number of
working days n. Notice that this parameter implicitly determines the number
of variables in the model: in facts, for each working day i € {1,...,n} a
variable z; is defined, together with the three variables z;, o and z3.

We provide as a computational result the mean number of points eval--
uated in order to determine the minimum. The values obtained in each

category are summmarized in the following table.

| n [[ None [ Conv | Bounds | Conv&Bounds |

20 || 14468 | 9463 1116 692
(100%) | (65,4%) | (7,7%) |  (4,8%)
80 i 14970 | 9708 1058 660
(100%) | (64,8%) | (7,1%) (4,4%)
50 || 15578 | 10144 953 602
(100%) | (65,1%) | (6,1%) (3,9%)
100 || 16128 | 10580 804 516
(100%) | (65;6%) | (5,0%) | = (3,2%)
150 || 16547 | 10885 747 484
(100%) | (65,7%) | (4,5%) (2,9%)
200 || 17922 | 11861 477 324
L (100%) | (66,2%) | (2,7%) (1,8%)

Table 1: Algorithm efficiency with respect to n

In each category we fix as a 100% base the mean number of points eval-
uated when no improvement is used. In this light, the algorithm efficiency
can be pointed out by observing that the combined use of the two proposed
improvements significantly reduces the number of evaluated points.

In particular, the use of discrete convexity properties reduces the itera-
tions to a 65% — 66% independently to the value of n. The improved upper
bounds result to be as more efficient as bigger is the value of n. In any case,
the use of both the two improvements provides the better performance.

In the second computational test the parameter n is fixed to 250 and we
considered different ranges of intervals for Mé{j) and ,u,U ). In this light, we
aimed to test the performance of the algorithm when the wideness of the

T
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feasible region is given by Mé(j ) and ;L? ). The results are presented in the

following table.

[range [| None |- Conv | Bounds | Conv&Bounds |

small || 16777 | 11114 658 431
(100%) | (66,24%) | (3,9%) (2,5%)
wide | 67781 | 34256 | 3069 1193
(100%) | (50,5%) | (3,1%) (1,6%)

Table 2: Algorithm efficiency with respect to the range of Mi(j ) ahd ,ugj )

Clearly, the number of iteratiohs increases with the wideness of the fea-
sible region. Notice that in this case the use of discrete convexity properties
results to be as more efficient as wider is the feasible region. Again, the
better performance is obtained by using both the two improvements.

5 - Conclusions

A class of hierarchical fleet mix problems, with various concrete applications,
has been fully studied from both a theoretical and an algorithmic point of
view. The improvements to the solution algorithm proposed in this paper
resulted to be extremely efficient, so that problems with a wide feasible region
can be solved in a reasonable time. : 7

- Further developiments could be represented by the study of different ways
to manage the stochastic demand of services.
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