~ Universita di Pisa
Dipartimento di Statistica e Matematica
Applicata al’Economia

Report n.301

A branch and bound approach for a class of d.c. :
programs | | |

~ Riccardo Cambini and Claudio Sodini

| Pisa, gennaio 2008
- Stampato in proprio —

Via Cosimo Ridolfi, 10 ~ 56124 PISA - Tel. Segr. Amm. 050 2216231 Segr. Stud. 050 2216317 Fax 050 2216375
Cod. Fisc. 80003670504 - P, 1VA 00286820501 - Web http:/ / statmat.ec.unipiit- E-mail: dipstat@ec.uniplit






A branch and bound approach
for a class of d.c. programs

Riccardo Cambini and Claudio Sodini

Department of Statistics and Applied Mathematics
Faculty of Economics, University of Pisa.
- Via Cosimo Ridolfi 10, 56124 Pisa, ITALY

e-mail: cambric@ec.unipi.it, csodini@ec.unipi.it

Abstract

The aim of this paper is to propose a branch and bound method for
solving a class of d.c. programs. In this method the relaxatlons are obtained
by linearizing the concave part of the objective function. The branch and
bound solution method has been implemented and analyzed by means of a
deep computational test.
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1 Introduction

In this paper we propose a branch and bound method for solving a wide class
of d.c. programs. This method allows to solve various kinds of problems, such
as nonconvex quadratic problems [2, 3, 6, 7, 12, 14, 16, 17, 22] multiplicative
problems [7, 13, 14, 15, 18, 19], some more general d.c. problems [1, 4,7, 8, 10,
11, 12, 14, 20, 21, 22}, and problems which can be rewritten in the considered
d.c. form by means of an increasing transformation. In other words, the
method proposed in this paper allows to solve in a unifying framework, that is
to say with the same solution algorithm, various kinds of problems which have
been studied and solved in the literature in different ways (see for example
[, 2,3,5,9, 10, 14, 19]). It is also worth pointing out.the relevance of the
considered class of problems in real applications, see for example [7, 9, 14,
18, 21].

In Section 2 the con51dered class of d.c. problems is defined and some
kinds of problems belonging to the class are provided, in order to witness the



wideness of the class and its usefulness from an applicative point of view. In~ -

Section 3 the branch and bound method is described while in Section 4 the
_results of a deep computati—onal test are provideci. -

2 Statement of the problem

In this paper we aim to study and to propose a solution method for the
- following class of d.c. problems havmg & polyhedral feasible region.- ‘

Definition 2.1 We define the followmg d.c. progra,mf

p. [ minf(@) = e(z) - TL, gi(dl)
lreX TR :

where X is a polyhedron which can be given by inequality constraints Az<b
and/or box constraints I<z<w and/or equality constraints Mz = ¢, where
A & R h e jm l,u e R, M e & g€ RP. Functions ¢: R — R and

t R — R, 4= 1,...,k, are assumed to be convex and continuous, while
__ __vectors d; £ R G . verify the followmg property I
| EJazﬁ@%’“suchthatazngm<ﬁsz€X i=1.0k ()

For the sake of convenience, we also define the matrix D = [dy; .. ., di] € R™**
whose ¢-th column is vector d;, 1 = 1,..., k.~ ' : '

Notice that condition (. 1) does not imply the compactness of the feasi-

... ble-region. X; notice also that no d;fferentiabﬂzty hypotheszs is assumed for .o

functions f, ¢ and g5, 1 =1,. k. :
In order to pomt out the Wzdeness and the usefulness of the class of
prob_iems P, it is worth pointing out the following particular cases.

'Production models -
Usually, in production models a convex cost functxon has to be mlmmued
In the case some profits could be gamed by selimg the overproduction, a
concave function of the kind — ¥ ; A\;max{0,d?z + d?}, where ); is the
selling price for the i-th good, has to be added in the objective function. As
& consequence: the followmg; functlon is obtamed ‘ -

$(0) = o) - z Nemax{0, ¥ + &}

This functlon verifies the assumptions of P just cons1der1ng the convex func-
tions g;(y) = A max{0,y +df}, i =1,... k. :




- Nonconvex quadratic problems
In [2 31 it IS shown how an indefinite or concave quadratic function f(z) =
27 Qz + g%z can be decomposed in D.C. formi.

o By means of a Lagrange decomposition or by means of eigenvectors
~ (which determine the vectors d € R*, i=1,...,k), it is possible to
decompose f(z) = 127 Qz + ¢"'z in the form:

1 e k1
fz) = (ESETQCU +qlz) -y §(d?$)2
dm=1
where @ is positive serﬁideﬁnite and k is equal to the number of negative
eigenvalues of Q. The assumptions of P are fulfilled by conmdermg the
convex functions ¢(z) = (3z7Qz + ¢*'z) and g;(y) = 5% |

¢ By means of a diagonal decomposition (which determines the real
© values N > 0, ¢ = 1,...,n), it is possible to decompose f(z) =
+27Qz + ¢"z in the form: _

flz) = (57T +¢7z) ~ Y i

where () is positive semidefinite. The assumptions of P are fulfilled by
. considering the convex functions c(z) = (327 Qz + ¢"'z) and gi{y) =
%)\iyz and by assuming dy, ..., d, be the canonical vectors of R".

Asa pafticular case, the following class of linear mul%ipiicative functions can
be considered: . '
fla)=>"(vlz +1] )(dTa: +d?)
i1
where d;,v; € R* and d9,4? € R for ail 4 = 1,...,r. This function can be
easily transformed in the form fz) = TQa: + ¢ x + go, with ¢} simmetric
n X 1 real matrix, by defining:

T

T ) r l .
Q= (vdl +dnl) , g=Y Addvi +0dy) |, qo=>_dv]

i=1 =] fe=l

so that it can be decomposed in D.C. form as it has been previously de-
scribed. For the sake of completeness, notice that in [15] this class of linear
multiplicative functions has been studied and solved with a different branch
and bound approach.



‘Class of multiplicative problems LA B
' The following class of multiplicative functions can be converted in the form
of P by means of a strzct}y monotone 1ogamthm1c transformatlon

Dy b (£ + )

oy ,
| LGkt e R
where the functions h; : R — Ry, ¢ = 1,..., k, and the functions v; : B® —»
Ry, j=1,...,r are assumed to be concave and posmve while the function

5.0 — 3? is requlred to be convex.
The strict monotonicity of the logarithmic function allows to study the
following transformed function in place of f (:r:):

ﬂ>m6~4xzwm - 32 teg ( (&2 + )

" This function verifies the assumptions of P just considering the convex func-
tions ¢(z) = s(z) —~ ZZ; log(v;(z)) and gi(y) = —~log (h; (y +'d§’)). |

T TR HOTCOTVER SEFIEtpe e
In the literature (see for all [14]), problems Wlth obgectwe function of the
kind :

| flz) = c(z Z by dTos + d%)?

: f=]
" have been solved by means of branch and cut or branch and select techniques.

R -:-'Thls function verifies the assumptions of P just cons1dermg the convex. funcm vt ot e
. tions gi(y) = Al + )% |

Some more examples _
The wideness of the class of problems P is witnessed by the following further
examples fulfilling the assumptions of function f(z). With this aim, recall
that the composition of a nondecreasing convex function by another convex
function is convex too. In the following examples function ¢(x) is assumed
to be convex and the parameters \; € R are supposed to be positive..

e f(z) =c(z)— L5, m , Where DY i/ (y+ d?) and the lmear
functions dT z + df are positive on the feamble region

o f(x) = c(z) — Ty M=, where gi(y) = Aie¥;

o flz)=cle) + T, ?\iZOQ(d? z -+ df), where g;(y) = ~Adog(y -+ d7) and”
the linear functions d} z + d are positive on the feasible region;
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o f(:c) = c(z) + 28 i/ dFz + dY), where g;(y) = —Aiy/y + &P and the
linear functions df z + df are nonnegative on the feasible region;
o flz)=c(z) -~ T M

- Notice that any positive linear combination of these functions verifies the
agsumptions of F.

7|, where gi(y) = i |y + df;

3 A branch and bound approach

The aim of this paper is to propose a branch and bound method for solving
problem P and to provide detailed results of a computational experience.
The approach is based on the relaxation of the objective function obtained
by linearizing its concave part — S5, g:{d? =) with respect to the functions
dTz, i = 1,...,k These relaxations provide, in the various iterations of
the branch and bound process, convex subproblems with polyhedral feasible
region which can be solved by means of any of the known algorithms looking
for an optimal local solution. The used branching criterion splits the feasible
region of the currént subproblem with respect to one of the functions df z,
i€ {1,...,k}.

3.1 Main properties

Given a pair of vectors o, 8 € R*, with o < 3, we can denote with B(a, 8)
the following set .
Blo,8) ={z ¢ ®": a<DTz<8}

The concave part — Yok, gi(dfz) of function f(z) can be linearized over -
B(a, 3) as follows: ' '

k . k
fa(x) = c(z) = > [p(dfz = i) + gi(0w)] = e(z) — p (DT — ) = 3 gslo)

i=1 . i=1 -
where for all i =1,..., kit is:

{ 9:(8¢)—gs (o) if o < i
My =

By—cs

0 if ap =3

Notlce that fz(z) is an underestimation function for f(z) over the set B(a, 8),
so that the following relaxed convex subproblem can be defined and used i in
the branch and bound scheme:

PB(C%B) . { ;nzl?gxl)g{fx:ﬁ)



"7 The following tesult provides an estimation of the error done by solving the

relaxed problem. With this aim the next functions will be used: .
_Errg(z,i). = (dTas — az) (gﬁ(dTa:) gz(az))
- Errp(z) = flz) -~ fB(:c ZET?‘B z, z)

‘ 1"];1
= ”T Z{ i dT.'IZ gi(ai)] :

Ery1

Theorem 3.1 Let us consider problems P cmd Pg(a, ﬁ) and let

g argmexiggn ﬁ){f(x)} and T = arg em( )ﬁ){fB( )}

Then, fB( ) < f(z*) < f(T); that is to say that

0 < flat) ~ fe(T) < E’T‘T‘B(m)

Proof By means of the glven deﬁmtxons it is:

y f(m) - fB(x) < fB( ) S

Noticing that f(z*) < £(z*) it then follows:

fol@) < fo(z") € F@) < £

_ The whole result is then p:roved bemg Errg(m) f(:n) fB(m) e RO

3.2 Branch and‘bouﬁdkscheme

First notice that 2k linear programs are needed to determme for z = 1,..0,k,
the followmg values:

-mmzn{dT:r} and. [J’@ max{dT:c}

- As usual in branch and bound methods a toierance parameter e > 0is
needed in order to guarantee the numerical convergence of the algorlthm '
Furthermore, another step parameter § > 0 will be used within the branching
‘eriterion in order to estimate the local decreaseness of the objective function.
The following branch and bound scheme can then be given.



Procedure Solve(F)
‘determine & and f;
fix the parameters € > 0 and § > 0; .
initialize the global variables xop = ﬂ and UB = 400;
Explore(&, 8);
Zopt 18 an optimal solution and UB is 1ts value;
end proc.

The core of the algorithm is the following recursive procedure “Explore()”,
which is based on a generalization of the so called “rectangular partitioning
method” (see [5, 22]). Notice that this choice guarantees the convergence of
the method, as it has been shown in {5].

Procedure Explore(a 3)
if XN Bla,B)#0 then
Let T be the optimal solution of Px(e, ﬁ) :
if f/(Z)<UB then UB 1= f(Z); Top =T end if;
if fB( ) < UB and Errp(Z) > ¢ then
define o = «, a” =, F = ,6, ﬁ”' 3;
set (= d?fa’:‘, 4% dT:z:
if F(z+38d;) > () then
- Explore(d/, 3);
Explore(a”, 3");
else _
Explore(a”, 3);
Explore(a/, 8);
end if;
end if ;
end if;
end proc.

Problem Pg(a, 8) can be solved by any of the known algorithms for con-
vex programs, that is any algorithm which finds an optimal local solution of
a constrained problem. Clearly, if c(z) is a quadratic [linear] function then
Pg(a, B) is a quadratic [linear] problem. In other words, the easiest is the
convex function ¢(z) the more efficient can be the chosen solution algorithm
for Pg(a, 3). o

Procedure “Explore()” opens no more branches in the case fz(z) > UB
(and hence, for Theorem 3.1, there is no possibility to .improve the current
solution) or Errg(Z) < e (and hence the error done in relaxing function f(z)
is sufficiently small). The visit criterion f(T + dd;} > f(Z) means that we



" aim to solve firstly the subproblem wheré the -function-'f(ﬁ:)"restri(':ted along -

the direction d; is locally decreasing.
In order to decrease as fa,st as possfole the error Errg(x) the bremch

.....

© Notice also that Condztlon ET‘TB(IE) > ¢ > 0 implies fchat for any 111dex 0

~guch that 4 = argmaxjeq,.. iy L ETTB(E, j)} it results Errg(Z, i) > 0, so that .

T% +# oy and df":ﬁ;éﬁz

4 Computational results

The previously described branch and bound method has been fully imple-
mented with the software MatLab 7.5 R2007b and tested on a computer
having 2 Gb RAM and two Xeon dual core processors at 2.66 GHz.

- In each category various problems have been randomly created and solved;
in particular, the needed matrices and vectors have been generated with
components in the interval [-10,10] by using the “rand()” MatLab function
(numbers generated with uniform distribution). The subproblems Pg(c, 8),

‘dependmg on the structure of their objective function, are solved by means _
“of the Tmprog()”. “quadptog()”, or “mincon()” MatLab fmctions. T

The average number of iterations and the CPU times spent by the algo-
rithm to solve the problems are given as the result of the test. ‘

: For the sake of simplicity, the test have been done with respect to the

: foliowmg; type of probiems '

x E X= {:1: E 3%” ! Ax<b l<m<u} R

where Q & R is a positive definite matrlx, q e R A€ E?Bmx” b e R™,
l,u € R, and where we used m = n. The following particular objective
functions, where A, dy € ®*, have been studied with respect to the same
feasible regions: - : o -

o gilys) =Nl +d)? i=1,. ks
-'gfa(yi)mz\-(yﬁdo)‘* i=1,...k
o gz(’yz)—klymd@t i=1,.. k.

The obtained results are summanzed in Table 1, Tabie 2 and Table 3 re-
spectively, where the cases k = 2, k == 5 and k = 8 have been considered and
where the column num prov1des the number of randomly generated solved
p:foblems -



n | num Iterations . CPU Time (secs)

: k=2 | k=5 | k=8 k=2 k=5 k=8
5 14000 | 6.4615 | 62.569 | 430.05 || 0.086885 | 0.42167 | 2.4645
10 | 2000 |} 11.945 | 177.22 | 16505 § 0.16365 1.858 | 17.354
15 | 1000 || 16.212 | 314.53 | 3475.7 | 0.33219 | 5.4048 1} 60.426
20 | 50O |1 18.844 | 442.86 | 5446.4 2.4682 49.486 ; 612.52

Table 1: g;(y:) = Ai{y; + df)?

n | pum . Iterations ’ CPU Time (secs).
k=2 | k=5 | k=8 k=2 | k=5 k=8
5 | 4000 {| 5.0095 | 47.141 | 333.34 || 0.042375 | 0,28855 | 1.8921
10 | 2000 8.492 | 113.44 | 1028.8 0.1121 1.2045 | 10.824
15 | 1000 [ 11.132 | 187.48 | 1890.9 || 0.23052 3.2243 | 32.517
20 | 500 12.624 | 266.4 | 2947.6 1.679 29.48 325.79

Table 2: gi(1:) = iy + df)*

The obtained results confirm that the performance of the branch and
bound method decreases as the number of the variables n and the number %
~ of functions g; increase. :

- Notice that the wideness of the cEass of programs covered by problem P
does not allow a direct comparison of the proposed approa,ch with others
appeared in the literature.

i

5  Conclusions

In this paper we pointed out that a wide range of problems (multiplicative
problems, d.c. problems, nonconvex guadratic problems, and s0 on) can be
solved in a unifying framework by means of the same branch and bound
method. The method has been concretely implemented and tested from
a computational point of view, showing good performances in the case of
problems having in the objective function a small number of functions g;,
i=1,... .k -

References

[1] Cambini R. and C. Sodini (2002), “A finite algorithm for particular
d.c. quadratic programming problem”, Annals of Operations Research,



[2]

3]

|4} Churﬂov Liand-M-Sniedovich- (1999) “Arconcave composite-programs =

oo num § 0 Iterationst LUl U CPU Time (sees).
k=2 | k=5 | k=8 || k=2 | k=5 | k=8

5 | 4000 6.493 | 35.068 | 172.76 || 0.044085 | 0.20336 | 0.94829
IQ 2000 9.146 | 63.614 { 326.21 || 0.081105 [-0.52005 2.6543 _
15| 1000 || 10.666 | 90.66 | 560.04 || 0.16268 | 1.1374 | 6.7816 |
20 | bOO 11.512 1 106.10 | 741.78 || 1.1027 8.3436 EE.793.| .

Table 3: g;(v;) = My + &9

vol.117, pp.33-49.

Cambini R. and C. Sodini (2005), “Decomposition methods for solving
nonconvex quadratic programs via branch and bound” Journal of Global -
Optzmzzatwn vol.33, n.3, pp. 313«»336

Cambini R. and C. Sodini (2006), “A computational comparison of some
branch and bound methods for indefinite quadratic programs”, Report
n.288, Dept. of Statistics and Applied Mathematics, University of Pisa.

. ming perspective on D.C. programming”, in Progress in Optimization,

‘['61

edited by A. Eberhard, R. Hill, D. Ralph and B.M. Glover, Applied
Optimization, vol.30, Kluwer Acadernic Publishers, Dordrecht.

Falk J.E. and R.M. Soland (1969), “An algorithm for separable noncon- _
vex programmmg problems Managemenf Science, vol.15, n0.9, pp.550- -

Floudas C.A. and V. VisWeswa,raﬁ (1995), “Quadratic optinization”, in . :
Handbook of Global Optimization, edited by Horst R. and P.M. Pardalos,

Nonconvex Optimization and Its Apphca‘mons vol 2, Kluwer Academzc
Publishers, Dordrecht, PP. 217—269 :

Floudas C. A Pardalos P.M. et al (1999), Handbook of Test Problems
in Local and’ Global Optimization, Nonconvex Optimization and Its Ap—
plications, vol.33, Springer, Berhn -

Hiriart-Urruty J.B. (1985), . “Generalized d1fferent1ab1l1ty, duality and
optimization for problems dealing with differences of convex functions”,
in Converity and Duality in Optimization, Lecture Notes in Economlcs
and Mathematical Systems, vol.256, Springer-Verlag.

10



9]

(10}
[11]

[12]

[13]

18],

[19]

Horst R. and P.M. Pardalos (eds.) (1995), Handbook of Global Opti-
mization, Nonconvex Optimization and Its Applications, vol.2, Kluwer
Academic Publishers, Dordrecht.

Horst R. and H. Tuy (1996}, Global optimization: Deterministic ap-
proaches, 3rd rev., Springer Verlag, Berlin.

Horst R. and N.V. Thoai {1999}, “DC programming: Overview”, Jour-
nal of Optimization Theory and Applications, vol.103, pp.1-43.

Horst R., Pardalos P.M. and N.V. Thoai (2001}, Introduction to Global
Optzmzzatwn, 2nd ed., Nonconvex Optimization and Its Applications,
vol.48, Springer, Berhn

Konno H. and T. Kuno (1995), “Multiplicative programming problems”,
in Handbook of Global Optimization, edited by Horst R. and P.M. Parda-
los, Nonconvex Optimization and Its Applications, vol.2, Kluwer Aca-
demic Publishers, Dordrecht, pp.369-405.

Konno H., Thach P.T. and H. Tuy (1997), Optimization on low rank
nonconvex structures, Nonconvex Optimization and Its Applications,

vol.15, Kluwer Academic Publishers, Dordrecht.

Konno H. and K. Fukaishi (2000), “A branch and bound algorithm for
solving low-rank linear multiplicative and fractional programming prob-
lems”, Journal of Global Optimization, vol.18, pp.283-299.

Le Thi Hoai An and Pham Dinh Tao (1997), “Solving a class of linearly
constrained indefinite quadratic problems by D.C. aigorlthms Journal
of Global Optzmzzatzon vol.11, pp.253-285.

Phong Thai Quynh, An Le Thi Hoai and Tao Pham Dinh (1995), “De-
composition branch and bound method for globally solving linearly con-
strained indefinite quadratic minimization problems”, Operations Re-
search Letters, vol.17, no.5, pp.215-220.

Ryoo H.-S. and N.V. Sahinidis (2003), “Global optimization of multi-
plicative programs”, Journal of Global Optimization, vol.26, pp.387-418.

Schaible S. and C. Sodini (1995), “Finite algorithm for generalized lin-
ear multiplicative programming”, Journal of Optimization Theory and
Applications, vol.87, n.2, pp.441-455.

R



7 [20) Tuy H. (1995), “D.C. optimization: theory, methods and algorithms”, in

[21]

[22]

Handbook of Global Optimization, edited by Horst R. and P.M. Pardaios,.‘
Nonconvex Optimization and Its Applications, vol.2, Kluwer Academic
- Publishers, Dordrecht pp: 149 216.- .

Tuy H. (1996) “A general D. C approach to locatzon problems , in
State of the art in global optimization, edited by Floudas C.A. and P.M.
Pardalos, Nonconvex Optimization and Its Apphcatlons vol.7, Kluwer
Academic Publishers, Dordrecht, pp.413-432.

Tuy H. (1998), Convez analysis and global optimization, Nonconvex Op-
timization and Its Applications, vol.22, Kluwer Academic Publi’shers,

Dordrecht.

12



