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, Estiméﬁon of Proportions for Ss'nalli_ Areas f(}sing Unit Level Models with

Spatially Correlated Population - An Application to Poverty Mapping

Ray Chambers’, Hukum Chandra’ and Nicola Salvati® -

Abstract

In this article mvesngaies two madel- based techmquc,s of small area estimation (SAF) to estimale
the small area proporimns the empirical best predictor (EBP) under a gcneralued hnear mixed
model (Rao, 2003, chapter ‘5 _Saei‘ and Cimmbers, 2003) and the modeﬁwbased dxrept estimator
(MBDE) under a lincar mixed model (Chandrahémd Chambers, 2005). In order to define aj ﬁniﬁed
metht)d of SAE for both discrete and continuous data; we examine an appliéation of linear
assumption based MBDE to the binary data and wécompa:ejts performance with the EBP via'
lempiriéal studies ixsing réal daté. We also evaluate thése methods of SAE based on small area
- models with 5paualiy correlated area effects where the 1xe1ghbomhood structure is deqcrx’oed by a
contiguity matnx Our results show that both the MBDE and the EBP perform well. The ]:BP isa
computation intensive method, in contrast, MBDE is easy to implement. In case of model
misspeciﬁcationé (e.g,, data with Jess variability), the MBDE appears to be more t—oﬁust. These

“results further show marginal gains due to spatial dependence between areas.
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1. Imtreduction
The demand of reliable stafistics for small areas, when only reduced sizes of the samples are
available, has pmmoted the- deveiopment of staiisncal methods from both ‘Lhe theﬂretwal and

ampiricai point of view. The conventional estimates for small area quazmtlas based on survey data

" alone are often unstable because of sampie 512,3 Timitations, In this perspective the model-based =~

methodologics allow for the construcnon of efﬁment est1mators and ﬂmr conﬁcience intervals by
borrowing the strength through use of a suitable model. These small arca estlmtorslhave several
fields of application: from the pfoduction of soci;di data to the prodﬁc;tion of envifonméntal data.
Small area‘ models make use oi‘?‘ éxpiicit linkl;ng mcdéls baséd on randorﬁ &rea—speciﬂc effects that
take into account for between areas varxatmn beyond thai: is explamed by auxiliary variables
mcludad in the model For coﬁtinuous response vanables the empmcal best hnear unbiased

predmtor (EBLU?) approach under linear mxxed model (LMM)-is very conumon and proven to be

efficient for small area estimation (SAE), see Rao (2003). However, for dlscrete response variables ©

a generalized linear mixed modgi (GLMM); contammg fixed anci:random effects, can be specified
(McGilchrs’; 1994), There is a growing need for‘current and reliablé count data at small aréa I'evel.‘
" ?or example as n mr:my countries, in It'ﬂy, thzs* tnfomnatmn need concerns Labour Force Survey
(LF S) realized by the Nauonal Statzstwal Instzmte (I‘ETAT) whlch has been studled to warrant
. accuracy only for estimates at regzonal level. Further, in SAE undf:r both LMM and GLMM, th?
random area ‘effécts- are geperglly‘assumed to be independent. ‘in practice, it should be ‘nmbie
reasongable to assume that the raiﬁdom area effects b‘etween.ﬂu‘a neighbouxing areas (for instance the
neighbourhood could be defined by a distance critericn} are é_ﬁrr,eléted aﬁd the cd;relation decays to
zeré as cfiétance iﬁcreases

For the contmuous response Vaﬁables, Chandra and Chambers (2005) descr ibed the modelubascd
direct estimation (MBDE) methods for SAE. and Chandm et al. (2007) extended the MBDE for
spatially correlated areas. '}L‘he MBDE is a welghted lingar estzmator for small areas, defined by

using the sample weights derived under population level LMM. Besides the ease of 1mplementatzon,
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the method is robust under model misspecifications. For the discrete. response vatiables, an
appropriate indirect model-based estimators for SAE, the empirical best‘ predi;ctof (EBP), is
essentially baseé on GLMM. A major difficulty in use of GLMM for SAE is- that the likeliﬁood
. function often involves- high dunensmndl m’feglais (computed by 1ntegtat1ng a product of discrete
.and normal densities, which has no analytical solution) which are difficult to evaluate numemcaily
Although computatlonally atfractive alternatives to the likelihood method are available, they can
suffer of inconsistency (Jiang, 1998). In context of SAE besides the parameter estimation, the mean
squared error {MSE) estimation for the EBP is another an outstanding problem because the
| analyticel form of the MSE is not suitableltb be callculated expiicitly (Mante‘xkga at el., 2007),
| although an approximate MSE of the EB? can ‘be derived under liﬁeér‘ approximation (Saei and
Chémbers, 2003). Moreover, one can use resamialing methods but these are computatjonally
intgnsive. In bther words, the MSE estimation for the EBP is not straightforward. An alternative is
to ignore the deficiency of the LMM and ﬁlbceed asifa Iin"eai model does hold. These ogitibns_ have
the appeal that they are relatively simple and cheap to implement. However, these options sidéstegp
the issues that the LMM is iﬁcorréct. Given the robustness of the estimation procedures, they can be
expe'ctedr tq produoé reasonable results. It Is interesting to éxp‘lore a less expensive (in term of loss
of efficiency) and a unified method of SAE applicable to both discrete and continuous response
.variab_les.

In this paper we examine the application of MBDE of SAE to the binary respose variable and we
compare its performance with the EBP. We also imesﬁgaie MBDE and EBP under small area
models. with spatially cerfclated random arca effects w_here the neighboﬁrhood structure is
described by a contiguity matrix. We evaluate the emiprical perforniance of different SAE methods
via simulation studies using real data sets. That is, this paper is planned in two fold. The first aim is
fo’ évaluate the efficiency Qf the MBDE zigainst EBP and the second to see the gains by
incorporating the spatié‘ﬂ dependence be‘.cween. the areas. Both of these issues have been investigated

via empirical studies using real data. Finally, we do apply these methods fo real data set from
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Albania. Living Standards Measi_xrement Study. (LSMS) to produce the poverty mapping for the
district of Albania. | | |
The rest of the paper is organised as follows. The next section defines the LMM and GLMM,

associated small area estimators for the pmportion‘s and their respective esﬁmators of mean squared

~ errors. In the section 3 we then Teport the erpirical results and their discussion. Sectxon 4 illustrates

the apphcatzon of verious methods usmg real ‘data, collected from the LSMS in Albama }*maily,

. section 5 concludes the paper Wlth major ﬁndmgs and research prospects that need fut’cher attention.

2. The Methodology
in this section we intmduce the GLMM and LMM. We. then describe the related estimators for
small area quantities based on these models and the MSE estlmatzon In pamcular, we focus on

binary response vanable with aim to estimate the population proportlons for the variable of interest

in smaii ‘areas and estimates for the MSES.

2.1 The Empirical Best Predictor for the Smail Areas
- Tt is well known that the GLMMs are suitable for the deveidpment of indirect estimates for small
- areas (Rao, 2003} thn the response data is non—normal The indirect estzmators fm small areas
unéer the GLMM are the EBLUP-type eshmators often known as the empmca} best predmtors,

(EBP) for small areas. Let U = L, N } deriotes the finite population of sx_ze N and assmn@d to "
| pa'rtiti'c;md into D non-ovetlapping sub-groups (or smail areas), U, each,of sizes N, with i=1,...,
such that N = E:.le .Letjand f;'espectively index the j unit \#ithin smail area i, y, 1s the survey
variable of interest (typically a binary variable)f and known for sampled units, x, is the vect;ﬁ of
~ guxiliary variables (including the inte?cept}, knéwn‘ for the whole poi;aulation. Let s, and 7
respacti;\i)ely denotes the sample (of size n, ) and non—séxnple (of siza N, ~n,) in small area 1. The

objective is to make inference about the small area { population proportions, p, =N ’EJ_ . Vi
. . ¢

Li.
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= M."‘ ﬁ;@f ¥+ Eﬁa ¥, } Let 7, be the probébility i‘haﬁ a unit / in area 7 assumes Vjaiue 1. Let u,
denotes is the random area effect for the small area i and assumed to be normally distributed with
mean zero and variance g. We assume ﬂﬁt u,’s are independent and ;;z,jiuj ~ Bin{l,7;) with
E(y, iui) =y = avu and Va’r(% |u) =0, =m(l ma'ré,.) . A popular model for this type of data is the
linear logistic mixed mpdei of the form |
logit(w ) = log {ny/(i ;n‘j)}a 1};; =X+ u,,f = I,....,Z\If,;z'.= LoD | (1
where B (px1) is the vector of regression parameters. Iﬁ small area literature for the estimation of
pzﬂcnom parameters, it is CO®011 practice to express the model (1) at.thle populat%on level as
below (Rao, 2003, chapier 6).. |
Let y, be the Nx1 vector of response variable with elementsy,, X, be %;hq Nxp I(BOM'
_ design matrix with rows x,, Gy =diag(ly 1si= D) is the known matrix of order Nxg, 1, isa
column vector olf ones of sizs:: k, u;(ul,...,uﬂ-)’ and ¢, denotes thla' Nx1 vector of linear
.predictor's. n, given by (1). We define p= E(y, | #) the conditional mean functipn of the response
vectoi y, given u with elements p, and V::z;;‘(yU | &) = dz‘ag{cry} the conditional covariance
mairix. Let g(.) be a mOﬁot'onic function, the link (McCullagh and Nelder, 1989, page 2’?), such
that g{u) can be expréss as the linear model of form
g =gy =X B+Gou. @
‘The equatioﬁ (2) defines a GLMM_, if y, given p are in&epeimdent and belong to the exponential
family of distribution. The vector of random area effects u has n;ean § and variance Q(d) = ¢l ,,
‘;Mhere I, is the identity matrix of order D. F‘or binomial response variaﬁle the link function g(.) is
a logit function, see equation (1). The relationship among y, aid n, is fe};resente{i through a

known functions(), defined by E(y, |u)=h{n,). Suppose that our interest is to predict linear



pa:ramqters.for small areas .G%auyu, where a, ;diag{a;,iml,..,b} is a DxN .ﬁ;atri_x and
| a; m—(aﬂ,..-.,‘awl) is a vector of known elements. For estimation of the population préportian for
small area i, &, d@nefe the population ‘ve_ctor with vatue N for éach popula'tion unit in area 7 and
o Wiﬂmgt loss of g‘enerality,‘ﬁve arrange the vector y,, so that ilts first # elements correspond to the
sample units, and then partition Ay yyl, My, X, and GU”according to sample aﬁd nori-sample

units as

' a ' | X G
)

* Here a subscript of s denotes components defined by the » sample units whiie a sub%;cript of r is
used to denotel'cozresponding components defined by the remaining N -—n noﬁ-sample units. 'Wé
- thenwriteEY ;‘:I'u}"%‘k(m')""”acﬂd‘ By u)'é“h(n;')' ‘."“Typi'czﬂ'ly ,h()"—”zs obtained -as~ =) ~The
parameter of interest 6= a;¥y can be exprossed as | |
O=ay,+ay, =ay,+ ar-h(X,ﬁ +G W) - 3y
: Hefe ¥, the vector of smﬁple values is known, whereas the sécond term of .(3), which depends .on
tﬁe noﬁnSamplas values y, = (X, B+ G,u), is unknown and can b¢ predicted by fitting the model
(3) for sainple data. In this paper, ¥, ={ ysg} denotes ‘ghe vector of sample values of fhe binary
survey ;v'aiiéble_ ¥ where y=1eg if tile c.oﬂsum}ﬁtion expenditure per =housuehold i;s less than a

poverty line, 0 otherwise. Similarly, y, = {jzry'} represents the vector of non-samples values of the

survey variable. It is obvious that the parameter of interest p; for each small area can be obtained by

’

using as prediction of each element{y,, }.

For known £(3), the values of § and u'aré estimated by Penalized QUasi-LiIéelillood (PQL) |
under model (3) fitted for sample daﬁa (Breéiow and Clayton, 1993}, This gives;t'he best linear
unbiased estimate (BLUE) for B and the best linear unbiased predictor (BLUP) for u. Hence, using
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(3) we obtain the BLUP-type estimator of 8. In p1'xctlce €2(d) is unknown and‘the vector of ~
_varzance components §is esumated from the sample data. Usmg estimated vaiue & of the d. leads
to the empirical BLUE {‘S for B and the empirical BLUP & for w and thus the empirical BLUP-
type estimator of 6 is given by
B=a,y, +a, (X B+6,D) | | (@
The GLMM involves the likelihood funct1on which does not have close form analytical expression.
| Several apprommatmns to the likelihood functmn and approximately maximum likelihood
estimators have been pxoposed m. the literature. The PQL approach is most popular e*;t;matzon
| procedure for the GLMM and it constructs a hneax approximation of the dlstubutmn of non-normal
response variable ¥ and assumes the Iineariseé dependent variable is approximatel‘y normal. This
approach is reliably convergent but it has been noticed that the PQL tends to undcrestlmate variance
components as well as fixed effect coefﬁclents (Breslow and Clayton, 1993; Jang and Lun, 2006)
McGilchrst (1994) mtroduced ’ihe idea to use BLUP to obtain apprommate restricted maximum
likelihood (REML) estimates for GLMMs. Thls link between BLUP and REML is described in
Harville (197 7) for the normal case. An zte_rat:ve proce;dure that combines the PQL estimation of B
and w with REML estimation of {8) is described 11; Saei and Chambers (2003). In our empirical
-vesulis reported in section 3, we adopted their algorithm for parameters e.stimation. ,
Turning now to estimation of mean s@u’aréd error {MSE) of the EBLUP-type predictor (4) we

define B, = H(#,) = 0h(n,)/ 877,\2? g, and B_= 9%, [on,0n! L? .  the matrix of second derivatives of

I, {the log-likelihood function / defined by the vector y, given u) with respect to n, at 7, =1, .

 Similarly, B, = 8%, fon,om.| . We put X =a,X, and G, =a,H G,. Then an approximate
r 1 PR |y o, . s r P

estimate of the mean squared error for the EBLUP-type estimator (4) (see Saei and Chambers,

2003; Manteiga et al., 2007) is

mse(B) = m (ﬁ) & 1, (6}+ 2m (6) +m (5) . ‘ _ : (5)



where
m@®) =G 16 with I = (0" +6.B,G)",

m,(8)=C,(X1B,X, - X BGIGBX Jc with ¢, = - G:f;*é;ﬁsXs }

'5&5‘(8)“@'{%(&7 v, W)} and (;5)== aha LetgmGTand G, be thej’rowofthemainx e

G, and put V - a(g; ) 66 5= IG.T, ) a& . and v(ﬁ) is the asymptotic covariance matix of
J iy '

es;timates of variance components & which can be evaludted as the iﬂvgrse of the appropriate Fisher
information matrix for 8. Ti.nis.depends upon whether wé are qsing ML or REML estim;ttes 8.1n
this paper we u;sed REML esﬁmates for § . See Saei and Chaﬁbers (2003) for tli_ese expx.:essions ‘for
) bofh ML and RQML estimates for & . |

As described earlier, for the estimation of small area proportion, -a; is the pépula.tion vector with

value N;' for each population umit in area i and zero everywhere else, In particular, using (4) the

~ empirical best predictor '(EBP) for the small ared i poptﬂa’tion proportion p, is

Dissr = - N {Eﬁ,yj ﬁ,uy} o (6)

[/

where fy = oxp(,) 1+ exp(ﬁ;j)}” =%, and 7, =x,B+7,. Likewise, we obtain the MSE estimates
for the EBP B gor from (5).

. In many smatlons the physical location of the small areas is so relevant that the assumption of
spatial independencc. of the small area models {as we considered eatlier in ihss section) becomes
qﬁastionable, Thﬁt is, small area data exhibit a spétial structare and therefore use of spa’sial‘. models
becqmés essential, Spatia‘i dependency is the extent to which the value of an atiribute in.one
iocation  deépends on the vaiue of the aﬁribute in neérby'locations or smax.ﬂl areas. Recently the '
problem has been addressed by im:r_oducing. a common autocorrelation parameter among small areas
extending the linear mixéd ‘model th;oxigh the Simultaneously Autoregressive (SAR) process

(Pré‘tesi and Salvati 2007; Singh el al., 2005; Petrucei and Salvati, 2006, Chandra ef al.? 2007). The



focus here is on 1he introduction of the SAR process in the GLMMs where the vector of random

area effects v =(v,) satisfies

V= pWytu=>v={I,~- PW) . (7
where p is spa;tial autoregressive coefficient which détermines the degree of spatial dependency of
the 'modcﬁ W is proximity or cdntiguous matrix of order D. This 'maﬁ:ix' is symetric and
‘ encapsulates the relative spatial arrangement (le. ne1ghb0urhood structure) of the small areas

whereas p defines the str ength of the spatial relationship among the random effects associated with
ne1ghbour1ng areas. The szmplest way 1o define such a matrix is as simple contiguity: the elements
of W take non-zero values only for-those pan*s of areas that are contiguous to each other. Generaliy,
for ease inter pretatmn the general spatial weight matrix is deﬁned in row—swlddxdazed form; in this

case p is called spaual autocone}ation pa:cameim (Banerjee ef al., 2()04) Here L'(u)-=0 and

Var(u} =gk, .90 E(v) 0 and Var(v) Qe p) = [(i 5 pW)(ID oW" )] , 'lwhere‘
Q({p o) = Q(ﬁ) is Lhe SAR dispelsmn matriz. Now to deﬁnc, the EBLUPwtype estimator (or the
EBP) under spaually coneiated area effects, the linear predictor 1), is expressed as

y = XyB+ Gy ' ' | (é)
where the vector v 1s an D-vector of Spatzaliy correlated atea effects that satwﬁes SAR model (7)

The spatial EBLUP-type estimator or spatial empirical best predictor (denoted by SEBP) of 8 is
Beay,+ a,,h(X,fS 4GV, 9
Following (3) we can write the MSE of the SEBP using the yariai}ce components d=(¢,p) and ¥

in place of 4. L -

2.2 The Model Based Direct Estimator for the Small Axeas
The model-based direct (MBD) approach for SAE, investigated in Chandra and Chambers (2005) is .

effectively linear estimators and implicitly assumes that the variables of interest follow a LMM.



The empirical studies show in case of model misspecification, MBD estimation pro:vides a robust
set of small area estimates. Applicatioh of the MBD method of SAE to non-normal data uses a set
of esfimation.proceduxe based on LMM and mgmﬁipulatés the data to make it fita LMM. Following

the notati_oﬁ of Chandra ¢t al. (2007) a brief description the MBD method is given here. Let us

" pasuine that population values follow the linear mixed model -

Yy =X B+ Gute,. . (10

e, = (8,,...&,) -partitioned to area components. The spatial independence between small areas
‘indicates the covariance matrix of y, has block diagonal strycture, V, =diag(V;lsis Dy with
V=l Ly o+ o1 S pracﬁce the variance componc;nts'thai define V{., are unknown and can be

estimated from the sample data using methods described, for example, in Harville (1977). We

" denote thess estimates by 8= (¢,6°) and put a ‘hat’ on any quantity where these estimates are
substituted for actual values, e.g.V, =dz'c’zg(’€7fj,1 <ixDyand V, =1, 15 +870,, . Similar to as

' Abeif:)w (2) we again consider the decomposition of different terms into sample and non-sample
components and from Royall (1976), under the population. level linear mixed model (10}, the

sample weights that define the EBLUP for the popﬁlatian total of y are

U (A B NS © 4 6.4 WED & WE (IS —‘ﬁ’X; )fgjﬁ,lr . - : (11) .

where A = (Einﬁ,;:Xm jl (ztx;ﬁ,;j ) Thé MBD estimator of the proportion for small area i
(Chandra et al., 2007) is tlag:il defined as

| Dy = 2 J, W, mp / E jes, Vs, EBLUP ¢ ‘ (1)

A robust e;stimlator (Chandra'et .al'., 2007; Royall and Cumbm:l_and, 1978) of the mean squared error

of the MBDE (12) is
. o . 2 |
- MPymp) = V(Dipaan) + {b(p:,mw)} o : (13)
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where ' v(ﬁJ,MBD) =N r—z 2 s, {aj’ +H(, - ”f)nMs }5\:; O i ‘Q’J )" with a, = (2,, Wy )] (N ¥y E;, Wk) is

the estimate of the predicﬁon variance of the MBDE (12), and A(D )=

' '-1 . . . . . . .
(Ek ., w,k) 2} e, Wyl = N,*Em 4, is the estimate of its prediction bias. Here pi/= E v PP
are unbiased estimators of the area specific individual expected values u, = B( yilx ) j€s, and
A= (=g, + Ek@«-‘n"l’é“ 1. Under model (10), f, = xjﬁ +G il fEs, is the estimators of the i, .

The MSE estimator {13}is called a fob‘u-st model-based estimator because it does not depend on the
second order moments assumpﬁons and thus robust to misspegiﬁcation of the second order moment
| of the working modél. See Chamﬁers et al (2007}.-‘
In order to take into accd}xnt the correlation between neighbouring areas we cor;sider the use of
- spatial models for randém area effects similar to we described for'the GLMM in section 2.1, That is
a SAR error ?rocess for the vector of random area effects. Then the underlying LMM is

Yy = XU(:} +G,v ve, ‘ (14)
wﬁere the vector v satisfy the SAR model {7).

The covariance matix of y, is Var(yy)=Vy =0y +GR(E)G, with 3= (p,0l,p) and

Q) =qfd, = p W), ~ o WHT. Usually the vector of parameters 8 :‘(tp,qf, pY is unknown

Ao~

and 1'ei31aceci by an asymi)tozicaliy consistent estimator & = (@57, 0) . When all fandom effects are
normally distribitted, the parameter vector 8 can be estimated via ML as well as REML (Prate;i;i |
and Sajvati, 2007; Chandra ef al., 2007). Nmnei'ical‘approximations to either tﬁe ML or REML
estimators @,&7 anﬁ $ can be obtained via a two-step procedure. At the first step, the Nelder-
Mead algorithzﬁ (Nelée,r and Mead, 1965) is used_fo approximate these estimates. fhe second step
then uses these approximatiops as starting values for a Fisher scoring algorithm. This is necessary

because the log-likelihood function has multiple local maxima (Pratesi and Salvati, 2007). In
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. empirical studies, repoﬂ'ed in Section 3, we carried out parameter estimation via REML using the
Ime function in the R environment.
_ For the MBI estimation under (14) we note that the EBLUP sample weights (11) depend on the

structure of the random area effects in the LMM (10) only via the their sample and impulation ‘

S iovatianee stracture, Consequently, extension fo more complex covariance strucfures requires only

that V! and V, be recompuied under these more complex models. When (14) holds, the

correspohding spatial EBLUP weights W0 = (W, guaryp) are therefore still given by (11), but
where now the variance-covariance matrix are V''= {c?‘fls + G @[, - WY, ~ SWH G }di and
V., =G, [(1, - W), - PW)" G, . The spatial-MBDE for small area i proportion p; 18 P, gmpe

{(denoted by SMBDE) and the corresponding es;timatbr of its mean squared etror are then given by

(12) and (13) respectiveiy, with the weights (1 I)f used there replaced by the spaﬁai EBLUP. weights

Wegmpe Gefined abpve, :

3. Simulation Studies
In this_sectidn we present simulation studies to illustrate the performance of the foud tlglethOdS»Of o
 SAE discussed in the p&evious section. These afe described as below:
) fne empirical best i)red.ictor under the GLMM (2) with spéﬁaily iﬁdependenﬁ area effects,
" denoted by EBP, - |
| iy  the MRBD .estimation under the LMM (10) with spatially independent area :effecté,
' denoted by MBDE, | |
(1ii) the empirical best predictor under the GLMM (8) Wiﬁl spatially .depende:ni area effects,
denoted by SEEP and | | |
(iv) thé MBD estimation under the LMM (14) with spatially dependent area effects, denéted

by SMBDE.
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We carried out desigh-based simulation studies using two real data sets. This evaluates the

'performanée of these methods in the context of real population and realistic sampling methods. The

. two data sets used in the design-based simulations are:

)

The ISTAT farm structure survey. This i3 a sample of 529 farms from the farm structure
survey in Tuscany (Italy) carried ou by ISTAT. Here we used these sample farms to genexate
a populatmn of N = 22977 farms by sampling with replacement from the original sample of

529 falms With pfobabiliti.es proportional to their sample weights. We drew 1000 independent

_ stratiﬁed random samples from this (fixed) population, with total sample size in each draw

equai to the original sample size (529) and with the small areas of interest defined by the 23
Local Economy Systems {(LESs) of the North Tuscany region. The small areas sample sizes
varied from 4 to 48 and were fixed to be the same as in the original samp_le.'T he response
variable y takes value 1 if olive production (quintals) of 2 farm is léss than median production
and 0 otherwise. Qur aim is 1o estimate the proportion of farms with olive production beloﬁ
n,mdiasa in each LES ﬁsing utilized olive surface (hectares) as the ai;xiliary. variablé. The

results from this simulation ate set out in Tables 1 and 2.

The Environmental Monitoring and Assessment Program (EMAP) survey. The sémple of 349

~ plots in the lakes from the North-castern states of the U.S. The survey is.based on a population

of 21,026 lakes from which 334 lakes were survefyed, some of which were visited,'in different
piots several times during the study period (1991-1995). The total number of measurements is
551. ’lhe 349 plot are the result of their grouping by lake and by 6-digit Hydroiogm Unit

Ccdes (HUC). Space-Time Aquatic Resources Modelling and Analysis Program (STARMAD)
at Colorado State University supplied this data set, developed by EMAP. The HUCs are
conszdered as regions of interest. In tluee areas sample sizes wete only 1’s.. Therefore we

\

decicled to combine these regions with their similar regions. Consequenﬂy, we left with 23

small areas. Sample sizes in these 23 areas vary from 2 to 45. We generated a population of

~slee NV = 21028 by sampling N times with'repiacement from the above sample of 349 plots
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(upits) and with probability proportiopal to a unit’s sample weight; and then 1000
independently stratified random samples of the same size as the original sample were selected -
* from this (fixed) simulated population: HUC sample sizes were also fixed to be the same as in

the original sample. The variable of interest y takes value 1 if Acid Neutralizinngapacity

T CANCY-an indicator of the acidification Tisk of wafer bodfes- in water resowrce surveys isless

than 5 CO and 0 otﬁerwisé. The elevaﬁon’ of the lak‘e.‘ is the auxiliéry variable. We are interested..
in estimation (fc" small atea proportion of plots for which ANC less thari 500. Resuits from this
simulation experiment are set out in Table 3 and 4.
We computed thrée measures to compare the performance of the different estimators: the relative
bias (RB) and the reiéti,ve. root mean squared error (RRMSE), both expressed as 1;m:rcem’cag:'as, of
est_imaiéé of the small area proportions and the coveragé rate of nominal 95 per cent CGQﬁdence

intervals for these proportions: In the evaluation of coverage performances intervals are defined by

the Qsti.rﬁéfé: of small ,éréa proportion p"lizs ‘ot minus twice their standard error (Chandra and
Chambers, 2005).. . |

In Table 1 we re’portéd the felative biais and relative root mean gquared error for sméll area »
propamons esizm&ted using four different methods of small area estimation (EBP MBDE SEB? - |
and . SMBDE) based on repeated samphng from the %mmiated Northern Tuscany population.
Correspondmg coverage rates for nomm&l 95% mtervals for small area pmporimns true and
estimated values of small area proporilom generated by these methods are shown in-Table 2,
* Analogous resulis foz' repeated sampling from the simulated BMAP population. are presented in
“Tables 3 and 4. - |

In Table 1 the unstable performance of both EBP and SEBP in region 5 and 6 are noteworthy.
These unétable results are due mainly to there being little or no variability in the data in these two
regiéns. In contrast, the MBDE and SMBDE methods appear unaffected by such behaviour. Further
in these cases boﬂ;xL EBP and QEBP' produces over estimates for émall area pfopor‘eions {Table ?) '

Although results are not presented here the empirical best linear unbiased predictor (EBLUP,
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lPrasad and Rao, 1990) under lizxéar assﬁmfﬂién is worst in these cases and 1e§ds to ﬁnexpécied
ﬁega‘iive or greater than 1 e:étima‘ces of small area proportions. Furthermore with sane magnitude of
average relative root mean squared error of EBP (and SERBP) and MBDE {and SMEBDES, the
average relative bias of MBDE (and SMBDE) is smaller than that of BEBP (and SEBP). In regional ‘
estimation there is nothing to choose in terms of relative biases, Iléwevér in terms 6f relative RMSE
it seems advantageous to include sijatiai effects in ERP, with a marginal gain. MoreoVer, no
significant difference in performanée of MBDE is ﬁotic;ad due to 'spatiai effects, The average
rélative RMSE of SEBP and SMBDE are méfginally smaller than EBP and MBDE, respectively,
Alﬁhough on average estimate of area propoi‘tioﬁs is eéuaﬂy good for all methods, however, average
coverage rates axé over estimated if spatial effects are ignored in small area models (Table 2), which
" again show an advantage of including spatial stmctufé. |

[Table 1 about here.}
[Table 2 about here.]

In Table 3 we noﬁced that results for regions 5 | and 9 are missing. In these regions true small area
' proportions (i.e. small area proportions ‘for population) is zero (see T ﬁblé 4. Cohsequenﬂy, we
c)ould not calculate the performance measures (i.e. relapive bias and zrelative root 1ﬁean square ertor)
s_ince these terms contain zero in their denominator. The a{ferage }:esults in Table 3 are based on the

average of remaining 21 areas. In terms of relative biases and relative RMSEs the conclusions from

Tablé 3 ave identical to results of Northern Tuscany population reported in Table 1.
[Table 3 about hete.]

Further, ir.x Table 4 we observed an over coverage rates for few regions. It seems clear that the MSE
for the MBDE/SMBE is being significantly overestimated, This is particularly puzzling for regions
1,2, 3,456,916 and 17. A criticai examination of results revealed ft‘na’t in these regions true small
area popﬁlatio11 proportion is either 1 (regions 1, 2, 3, 4,6,16 and 17) or 0 {regions 5 and 9). In
addition, in thes\e regions the estimated small area proportions via MBDE/SMBE are same as true

values for all simulation runs so true MSEs turn out to be zero. However, the estimates of MSEs are
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not zero, Thm resulted in an overcstimation of MBDE/SMBE mean squared errors. Although true
MSE is not exactiy ZE10 for the EBP/‘SEBP methods since they are indirect estimator but stmilar

problem exist with MSE estimation these methods as well for such regions. -

[Table 4 about here.] .

Oﬂf'éi‘aﬂ"' paEin ?JY‘iﬁé’dfﬁbi‘é"fiﬂg'?p&fiai"‘effééfs iﬁ"'Ei‘l’iﬁiT modsls for binary variablg i maxgmal B

However, an mterestmg point to note here is an application of linear assumption based MBD
approach of SAE for the bmary survey variable. In this context an obvious est;mator is 1ndirec,t .
me’rhod of SAE based on GLMM. That i is the empmcal best predmu}r method described in sectmn
o2 Fmpn'mal results based on two real popuiauons clearly show MBD method pelzforms well when
~applied to the bmary vanabie and there is no significant efficiency loss. In general, when model

holds correctly (i.e. under normal circumstance of the data) indirect method bascd GLMM are

'sligh“tly. more efficient than the MBD_ (Table 1 and 3). However, when data hav_e’ less variability or

© 1655 suiiable Tor Hodslimg MBDE ‘provides more Tobust small area estimates. Note that hn_e'af B

assumption based indirect method (ie. EBLUP) is not suitable in this case. The MBDE approach.
has ease of implementation. In contrast, the EBP is a computation intensive method and based on

approximation methods for parameters estimation.

4. Apphcaﬂan to Poverty Mappmg for Albania

Poverty aliewatwn programs have constituted, in the recent years, an 1mpomnt issue in the policy
agenda of most developing countries. This is the reason why poverty analysm has bccome a wxdcly'
spread tool to support policy appiica‘cions. Among p’overty ‘ana‘lysis techniques, poverty ma,ppmg is
considered one of the most officient meihéds that pérmit sufficient disflggregat_ion‘ of a poverty
- measure to small geographical units. In other words, it highlights poor areas that had previously
been unnoticed or had been conéidered poor but with little suppéxt evicierice. Poverty mappiné has -
different uses ranging from targetmg anti~poverty programs, to provide visual information on

Spa’uai distribution of poverty, oonsequently there are dlffexent methods that petmit to consider the
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" spé.tiai dimension i1.1' tbe poverty analysis. In parficular, poveﬁy maps based on scplﬁsticated smali ‘
area-models, consﬁtutes a relevant improvement in the ability o tal get the poor. This methodology
starts estimating poverty IMeasures (such as the Head Count Index) by the use of nanonal
represcantatwe,. household surveys. Then it goes one step further, with the integration of other
' sources than the household survey and the application of small area models, povérty mapping is
able to produce a high resélutien spatial distribution of poverty that Would be not.possible with the . -
household survey alone. A new line of attack to deal with the poverty mapping is the iﬁolusion in
the process of .cstimation of information regardiﬁg the distance (geographical, spatial, etc.) among
the doméﬁns.' It seems logical fo assume, .foi” ex&nple, that cc)n‘f,iguoﬁs areas are more similar than
far away areas (Petrucci ef.al., 2003). |

In previous section we ix_zvestigated the empirical ber_fonnances of the two approach of SAE
(MBDE and EBF’) under the design-based simulation studies using two redl data sets. We
consxdered both spa‘ml dependence and independence between the areas. Our results show both -
approach of SAE is performing well and only a marginal g gain duoe to spatial structure. Whai follows
next, we apply the MBDE and EBP methods of SAE without the spatial effects to estimate the
propomon of houscholds for Whmh the per-capita consumptlon expendﬂure i‘dﬂs below a mlmmum
level (poverty line} necessary to meet the basic food and non-food needs by district in Albania: the
Head Count Ratio (HCR). The poverty line that we used to obtain the poverty estimates in Albania
is set equal to 4,891 Leks per .mointh (World Bank, 2003). There are twelve prefectures in Albania
with a prefecture consisting of several districts. There are thirty-six districts in total (Figure T).

[Figure 1 about bere.]

The dataset used m the foliowing analysis is constituted of information taken from two som'ces:‘
the Living Standards Measurement Study (LSMS) conducted in Albania in 2002, and the Census -
data 2002. The survey provides valuable information E}n a variety of issues related to Hving
conditions ¢f the people in Albania. An attempt to obtain direct estimates of household per-capita

consumption expenditure at district Jevel reveals the lack of precision (increased variance) of the
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direct estimates particulatly for districts with small sample sizes. The selection of covariates to fit
the small area models relies on prior studies of poverty assessment in Albania (B etti, 2003; Tzavidis
et al., 2007), We have selected the following household level ‘variables': the house‘hold‘—size, the

-presence of facilities in the dwelling (TV, parabolic dish ‘amenim, refrigefator, air conditioning,

! personal computer), ovnership of dwelling, ownéiship of land and ownership ofcar. o

The results are shown in Table 5 and maps for the HCR at district level are reported in Figure 2.
The  maps ate particularly‘ informative: the location and the concentration of pbor becomel
immediately obyiouslfrom an examination of the Table 5 and the associated maps 1-2. The district
of Bulgize (poverty head count ratio of 65% by EBP and 6’?% by MBD), Kurbin (44% and 48%)

.and Peqgin (35% and 42%) are the poorest. The district of _Vl.ore is the better off in terms of
percentage of houséholds below the poverty line (5%) by using the EBP, whereas from the MBD,

the less poor district is Giirokaster (0%). These districts are followed by Sarande (7% and 4%). We -

' can note that thestancia?rcierrors associated wiﬁx”{l;e EBP are slightly less than those obiained for |

MBD estimators. According to the I—ICR the districts.in the mountain region of Albania (nortﬁ and
nortki;east) are the worse off. | . .'

ITable 5 about here.]

[Figure 2 about here.]
We point out that our results ate not directly comparable with results obtained from the World Bank

by using the approadh of ‘El‘oers, Lanjﬁuw and Lanjouw (2003 - ELL method),_because we didn’t

have access to the complete database empioyed for producing poverty estlmates with the ELL . -

method. Anyway, the results appear to be consistent with World Bank experts’ oplmons and with

results obtained by applying the BLL method.

5. Concluding Remarks
In this paper we present an empirical investigation of use of spatial model in SAE for binary survey

* variable when normality assumption is pot valid. We have shown the application of GLMM based
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ezﬁpirical best predictor and linear mixe& model based MBD methods for small areé propértion
_estimation. Our-éxn;airidal'.results, based on real data indicate that the gains from. igclu.si011 of spatial
structure in SAE do not aﬁpéﬁr 1o Be large. ”fhis is especially true for MBD estimation based on this
. structure (SMBDE), wﬁere the extra spatial information seems to have very little impact on the
distribution of the SEBLUP weights that characterisel this method of estimation. However, MBDE |
methiod seems 6 working well for discrete survey (B'inaw)'variable. Our results show that the
MRBDE performs well and représents an aitem.ati\}e to the EBP for the discrete data. We also note
that in cés.e of model misspecification {e.g. data with less variability), the ‘MEDE appears o provide.
‘a more roﬁust set of small area estimates. -

. There are many issues that still need to be explored in the context of using unit level models with
spatially distributed area ef{acts in SAE. The most irnportant of these is 1dent1ﬁcat1on of situations -
where inclusion. of spatial information does have ‘ai‘;imp&ct; and the most appropriate way of then
including ﬂihi's spatial informétion in the small_ area modelling process. An important practical issue
in this regard relates to the coinputaﬁonal burden in fitting spatial tmodels to survey data. With the
large data sets common in':survey applications it can be extremely difficult to fit spatial models
withoﬁt aﬁcesﬁ to ‘fligh—end compufational facilities. Although spatial intbrmation is beéoming
mcreasmgly avaﬂable in environmental, epideraiologicdl and economic apphcauons, there has been
comparatwely Tittle work carried out on how to efficiently use this mfoxmatmn A further issue
relates to the link between the survey data and the spatial information. In this paper we have
dssumc,d that all areas have sample units. In many situd’tzons this is not txue, with survey data
available ouly from a sample of areas, Howevey, we offen have spatial information for all areas.
Saei and Chambers (2005) have explored the use of this spatial information in order to efficiently
estimate the ‘ohaxacteristics of the so~called ‘out of sample’ areas for the continuousr response

variables. A similarly work needs to be extended for the diScréte response variable. Finally, we note
that the spatial models considered in this paper fxave been based on neighbourhoods defined by

contiguous areas. It is easy to see that this is just one way of introducing spatial dependence
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between area effects, and sevéral other options remain to be investigated, e.g. geographical

weighted regression ete.
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Table 1 Relative Bias and Relative Root Mean Squaréd Errors for the Northern Tusca.ny data.

~ Regions are arranged in order of increasing population size.

 BBP

Relative Bids, %

. Relative Root Mean Squared Error, %

Regions ‘ SEBP MBDE SMBDE EBP __ SEBP _MBDE _SMBDE
' 1| 3005 21.64 001 0.02 5435 4766  56.83 56.83
2 -4.58 146 030 -0.30 13.03 1239 17.60 17.60

3] -14.38 12,06 0.00 0.00 1453 1234 0.0 0.00

41 071 .3.63  -LI8 -1.18 20.58 1896 3682 3682

st 14771 - 12617 578 574| 16749 14474 11026 11023
6| 8245 11325 999  -10.51 9736 12518 102,60  102.09
71 349 . 687 036 -0.37 26.43 2574 2962  29.62

g -122 071 -0.03 -0.09 10.62 1014  14.26 14.26
9 965 . 161 -016 -0.26 20.06° 18,10 2331 2331 -
10 -9.01 891 0.16 0.09 9.81 9.68 731 7.35
11} 123t 13.35 056 0.50 28.81 28.85  31.08 31.07
12| 365 206 072 -0.73 19,94 1908  23.51 23.52
131 -0.44 760  -0.15 020 172 2424 2902 2901
141 -520 538  -0.16 -0.16 640 663 433 4.33
15| 145 233 041 0.39 14.80 1511 1878 18.78

16| -4.02 491 011 015 11.22 1143 1521 1524

17{ -0.05 - 238  -1.03 -1.03 31.66 2116 2390  23.90
18| -3.11 147 052, 064 1452 1435 1772 17.72
190 -0.59 402 0.64 061 - 9.84 1093 1293 12.94
201 249 264 059 0.57 14.11 13.82  15.69 15.69
200 012 0 177 -1.04 2107 1083 1078 1271 12,71
21 017 052 031 0.36 15.08 14.63 1862 18.62
23| 1142 001 193 . -1941 2791 2629 2847 2847
Mean | 10.62 1132 -0.42 -0.48 2835 - . 2792 2829 2827
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"Fable 2 Small area proportions and coverage rates for the Northern Tuscany data. Intervals are

defined by the small area mean estimate plus or minus twice their corresponding estimated root

mean squared etror. Regions are arranged in order of increasing population size.

. Small Area proportion Coverage rates
Regions True  EBP / SEBP MBDE SMBDE| _EBP _SEBP MBDE SMBDE
: i1 027 036 033 027 027 100 096 096 097
o o079 075 078 079 079 100 092 099 099
3 100 086 088 100  1.00f 100 1.00 100 100
4 063 063 065 062 062 100 098 097 098
si 00 024 022 010 00 100 096 100 - 100
6 007 014 016 007 007 100 098 100 100
A 044 047 047 044 044 099 054 098 096
g 064 063 063 064 064 100 098 095 096
of 050.. 045 046 050 0500 099 090 095 | 095
ol o8 08 08 089 08} 100 093 100 100
11 025  0.29 029 026 026 .00 097 098 0.97
12048 .30 049 047 . ...0470 099 .. 0.6 0.97
13l 040 040 043 040 0400 098 091 096 096
14l 095 090 090 © 095 095 100 098 100 100
15| 057 058 056 058 058 099 097 09 095
160 - 0351 049 048 051 051 100 093 096 - 097
11 036 036 037 035 035 099 - 095 099 098
18 043 042 044 043 043 099 097 098 098
19 066 . 066 064 067 067 100 097 09 096
20 048 050 050 049 049 099 098 097 097
21 055 055 054 054 054 099 098 096 096
2| 044 044 043 043 043 100 097 097 096
23 024 027 026 024 024 099 097 099 098 -
Mean 051 051 051 051 .S 100 096 098 . 097
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Table 3 Relative Bias and Relative Root Mean Squared Errors for the EMAY data. Regitms. are

arranged in order of increasing population size.

.. Regions

Relative Bias, % .
MBDE SMBDE

‘Relative Root Mean Squared Error, %

EBP SEBRP ‘ EBP  SEBP MBDE SMBDE
1y -8.13 916  0.00 0.00 8.27 947  0.00 0.00
2 -1.72 -0.66 0.00 0.00 - 1.82 0.79 0.00 0.00
3| -14.08 -18.18 0.00 000 14.15 18.65 0.00 0.00
a4l 423 -3.86 . 0.00 0.00 428 395 - 0.00 0.00
5 # # % ok ] - 5 _ %
6| -1.06 -2.06 0.00 - 0.00 | 110 2.20 0.00 0.00
7 2.41 225  -0.86 0921 1583 1542  21.62  21.64
8 6.43 029  -0.68 - -0.67 75.18 71.60 9371 93.71
9 5 - ¥ * B ‘ # ook e
10 0.50 1.10 0.47 0.37. 18.06 17.85  21.33 21.33
11 -2.40 081 018 0211 . 616 571 712 715
121 10.84 15.66  0.85 0.68 28.92 3203 3878 3874
13| 3637 28.01  -1.48 -1.53 73.68 68.63 7601 - 7599
14] -035 . -0.62 -0.16 0.26 6.45 6.42 740 7.43
15| 453 296 <091 - -1.12 23.48 2297 2621 26.20
16} -4.63 -5.03 0.00 0.00 4.71 512 . 0.0 0.00
17] 264 260 0.00 0.00 2.69 2.66 0.00 0.00
18 3.48 845 -0.89 0,91 24.27 2652 2527 2526
19 0.44 014  -0.97 -1.16 5.91 5.87 792 198
20 2.21 3.69 . 0.94 101} 2750 27.66 2531 2533
21 072 055 045 0510 520 5.10 6.44 6.47
20 217 -1.39 0.20 0.21 11.35 1108 11.06 - 1106
23 052 - -045  -1.04  -1.26 843 839 1098  11.03

Mean | - 1.22 0.82 . -0.25  ~0.30 1750 1753 18.05 18.06

* In fhese regions, true population proportion {(dominators in calculating the relative measures) s zero so the relative
bias or relative RRMSE canriot be calenlated. :
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Table 4 Small area proportions and coverage rates f01 the EMAP data. Intervals are defined by the
small area mean estimate plus or minus twme thelr corresponding cstlmatcd root mean squmad

eITOr, Regmns are arranged { in order of i increasing popuiauon 51ze

Stmali Area propomon_ _ I Covemge rates -

Regions True EBP SEBP MBDE SMBDE  EBP SEBP MBDE SMBDE

1. 100 092 091 1.00 100, 1.00 100 1.00 1.00

A 100 098 099 100 1.00] 100 - 100 100 1.00

3 1.00 0.86 0.82 1.00 1.00 1.00 1.00 1.00 1.00

4 1.00 096 096 100 100 100 . 100 1.00 1.00

55 000 025 025 000 0000 100 1.00 1.00 100

6 100 099 098 106 100,  L00  1.00 100 1.00

A 076 097 077 075 0751 087 087 085 . 093

g 028 030 028 028 028 091 087 098 080

of 000 011 010 0000 000 100 100 1.00 1.00

10f 063 064 064 064 064 094 094 094 096

1 093 091 092 093 093 100 094 100 1.00
12l 043 049 051 044 044 098 096 094 . 0,94

13l 022 030 028 022 0224 097 097 097 097

14 . 08 08 08 087 087 093 094 097 099

15 036 037 037 036 035 095 096 098 . 097

16 100 095 095 1.00 1.000  1.00 .00 1.00 1,00

71 1L.00 097 097 100 1000 1.00 - 10O 100 1.00

180 055 037 060 055 - 055 09 08 096 096

180 079 080 079 079 078 097 - 097 094 094

200 046 047 048 047 047, 087 087 097 098

21 088 088 088 - 088 088 096 096 099 1.00

220 082 081 081 0383 0.830 093 092 099 1.00

23l 065 065 064 064 064 097 097 095 095

Mean 068 069 069 068 068 096 096 098 097
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Table 5 Estimates and standard errors (in bracket) of the Head Count Ratio (HCR) index by district

of Albanian for the LSMS data.

VLORE

District EBP MBDE
BERAT 0.207 (0.037) 0.175 (0.047)
BULQIZE 0.651 (0.038) , 0.679 (0.066)
DELVINE 0.197 (0.069). - 0.286 (0.105)
DEVOLL 0.139 (0.065) 0.117 (0,086)
DIBER 0.206(0.025) 0.242 (0.036)
DURRES (.291 (0.033) 0,298 (0.033)
BLBASAN 0.206 (0.028) 0.239 (0.047)
FIER 0.114 (0.019) 0.122 (0.026)
GRAMSH 0.322 (0.038) 0.368 (0.065)
GIIROKASTER 0.077(0.040) 0.000 (0.081)
HAS 0.155 (0.042) 0.073.(0.063)
KAVAIE 0,094 (0.028) 0.082 (0.036)
KOLONIE 0.208 (0.095) 0.293 (0.139)
KORCE, 0.130 (0.028) 0,111 (0.03%9)
KRUJE 0.317 (0.064) 0.389 (0.081).
KUCOVE 0.241 (0.064) 0.237 (0.070}
KUKES 0.247 (0.026) 0.402 (0.128)
KURBIN (.441 (0.053) 0.484 (0.071)
LEZHE 0.099 (0.031) 0.054 (0.044)
LIBRAZHD 0.286 (0.029) 0.351 (0.057)
LUSHNIE 0.132 (0.025) 0.134:(0.031)
MALESI E MADHE 0.221 (0.063) 0.306 (0.100)
MALLAKASTER ' 0.184 (0.057) 0.143 (0.064)
MAT 0.135.(0.044) 0.118 (0.082)
 MIRDITE 0.149 (0.059) 0.122 (0.089)
- PEQIN 0.352(0.077} 0,421 (0.105) -
PERMET 0.137 (0.060) 0.163 (0.087)
POGRADEC 0.258 (0.055) 0.259 (0.057)
PUKE 0.288 (0.071) 0.227 (0.086)
SARANDE 0.067 (0.028) 0.036 (0.036)
SKRAPAR 0.240 (0.087) 0.223 (0.097)
SHKODER 0.161 (0.027) 0.179 {0.034)
TEPELENE 0,207 (0.062) 0.237 (0.077)
TIRANE . - 0.150 (0.016) 0.117 (0.039)
TROPOIE 0.238 (0.038) 0,324 (0.088)
0:051 (0.016) 0.028 (0.024)
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Figure 1 Albanian district map. -

4

' Figure 2 District level estimates of Head Count Ratio (HCR) under (i) EBP and (if) MBDE.

(i)

5] D051 - 0.099 5-0.083
0,089 - 0364 BB 0.003-0.8
0,151 0,258 b.36~0.324
6,268~ 0443 0,374 0,405
0441 0.651 R 0.48% -0.676
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