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Abstract

For utility functions u �nite valued on R, we prove a duality formula for utility maxi-
mization with random endowment in general semimartingale incomplete markets. The main

novelty of the paper is that possibly non locally bounded semimartingale price processes are

allowed. Following Biagini and Frittelli [BF06], the analysis is based on the duality between

the Orlicz spaces (Lbu; (Lbu)�) naturally associated to the utility function. This formulation
enables several key properties of the indi¤erence price �(B) of a claim B satisfying conditions

weaker than those assumed in literature. In particular, the indi¤erence price functional �

turns out to be, apart from a sign, a convex risk measure on the Orlicz space Lbu.
Key words: Indi¤erence price - utility maximization � non locally bounded semimartingale �
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1 Introduction

The main purpose of this paper is to study the indi¤erence pricing framework in markets where

the underlying traded assets are described by general semimartingales which are not assumed to be

locally bounded. Following Hodges and Neuberger [HN89], we de�ne the (seller) indi¤erence price

�(B) of a claim B as the implicit solution of the equation

sup
H2HW

E

"
u

 
x+

Z T

0

HtdSt

!#
= sup

H2HW

E

"
u

 
x+ �(B) +

Z T

0

HtdSt �B
!#

; (1)

where x 2 R is the constant initial endowment, T < 1 is a �xed time horizon while S is an

Rd�valued càdlàg semimartingale de�ned on a �ltered stochastic basis (
;F ; (Ft)t2[0;T ]; P ) that
satis�es the usual assumptions. The Rd�valued portfolio process H belongs to an appropriate class

HW of admissible integrands de�ned in Section 2.1 through a random variableW that controls the

losses incurred in trading. B is an FT�measurable random variable corresponding to a �nancial

liability at time T and satis�es the integrability conditions discussed in Section 3.1.
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Throughout the paper, the utility function u is assumed to be an increasing and concave

function u : R! R satisfying limx!�1 u(x) = �1:
Neither strict monotonicity nor strict concavity are required, but we exclude that u is constant

on R.
In principle, a general way to compute the indi¤erence price in (1) is to solve the two utility

maximization problems, in the sense of �nding the optimizers in the class of admissible integrands.

Such optimizers then correspond to the optimal trading strategies that an investor should follow

with or without the claim B, therefore providing a corresponding notion of indi¤erence hedging

for the claim. However, it is generally possible to employ duality arguments to obtain the optimal

values for utility maximization problems under broader assumptions than those necessary to �nd

their optimizer. Since these values are all that is necessary for calculating the indi¤erence price

itself, the main goal here is the pursuit of such duality results rather than a full analysis of the

indi¤erence hedging problem which is deferred to future work (even though some partial results in

this direction are provided in Proposition 3.18).

The key to establish such duality above is to choose convenient dual spaces as the ambient for

the domains of optimization. Our approach is to use the Orlicz space Lbu - and its dual space Lb�
- that arises naturally from the choice of the utility function u and was previously used in [BF06]

for the special case of B = 0, as explained in Section 2.

We then use this general framework for the case of a random endowment B in Section 3 and

prove in Theorem 3.15 a duality result of the type

sup
H2HW

E

"
u

 
x+

Z T

0

HtdSt �B
!#

(2)

= min
�>0; Q2MW

�
�x� �Q(B) + E

�
�

�
�
dQr

dP

��
+ �kQsk

�
: (3)

where W is a loss control and in the dual problem (3), � : R+ ! R is the convex conjugate of the
utility function u, de�ned by

�(y) := sup
x2R

fu(x)� xyg ; (4)

whileMW is the appropriate set of linear pricing functionals Q, which admit the decomposition

Q = Qr +Qs

into regular and singular parts. The penalty term in the right-hand side of (3) is split into the ex-

pectation E
h
�
�
�dQ

r

dP

�i
, associated only with the regular part of Q, and the norm kQsk, associated

only with its singular part.

From the previous results [BF06] in the caseB = 0, we expected the presence of the singular part

kQsk, due to the fact that we allow possibly unbounded semimartingales: As shown in the Examples
in Section 3.6.1 and discussed in Section 3.5, when also the claim B is present and is not su¢ ciently

integrable, in the above duality an additional singular term appears from Q(B) = EQr [B]+Qs(B):

The above duality result (2)-(3) holds under the assumptions that B belongs to the set Au of
admissible claims (see de�nition 3.2). Even though we admit price processes represented by general

semimartingale, the above assumptions on B are weaker than those assumed in the literature for
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the locally bounded case - see the discussion in Sections 3.1 and 5. This is a nice consequence of

the selection of the Orlicz space duality.

Regarding the primal utility maximization problem with random endowment, in Theorem 3.15

we also prove the existence of the optimal solution fB in a slightly enlarged set than f
R T
0
HtdSt j

H 2 HW g. As it happens in the literature for B = 0 this optimal solution exists under additional
assumptions on the utility function u (or similar growth conditions on its conjugate), which are

introduced in Section 3.4.

Since the most well�studied utility function in the class considered in this paper is the ex-

ponential utility, we specialize the duality result for this case in Section 3.6, thereby obtaining

a generalization of the results in Bellini and Frittelli [BeF02], the "Six Authors paper" [6Au02]

and Becherer [Be03]. Some interesting examples of exponential utility optimization with random

endowment are presented, where the singular part shows up. These examples are simple, one pe-

riod market models, but surprising since they display a quite di¤erent behavior from the locally

bounded case, which is thoroughly interpreted.

While the notion of the indi¤erence price was introduced in 1989 by Hodges and Neuberger

[HN89], the analysis of its dual representation in terms of (local) martingale measures was per-

formed in the late �90. It started with Frittelli [F00] and was considerably expanded by [6Au02]

and, in a dynamic context, by El Karoui and Rouge [EkR00]. An extensive survey of the recent

literature on this topic can be found in [C08], Volume on Indi¤erence Pricing.

Armed with the duality result of Theorem 3.15, the indi¤erence price of a claim B is addressed

in Section 4. The classical approach of Convex Analysis - basically the Fenchel-Moreau Theorem

- was �rst applied in Frittelli and Rosazza [FR02] to deduce the dual representation of convex risk

measures on Lp spaces. Based on the duality results proven in [F00], in [FR02] it is also shown

that, for the exponential utility function, the indi¤erence price of a bounded claim de�nes - except

for the sign - a convex risk measure. In recent years this connection has been deeply investigated

by many authors (see Barrieu and N. El Karoui [BK05] and the references therein).

In Section 4 of this paper these results are further extended thanks to the Orlicz space duality

framework. This enables us to establish the properties of the indi¤erence price � summarized in

Proposition 4.4, including the expected convexity, monotonicity, translation invariance and volume

asymptotics. More interestingly, in (65) we provide a new and fairly explicit representation for the

indi¤erence price, which is obtained applying recent results from the theory of convex risk measures

developed in Biagini and Frittelli [BF07]. In fact, in Proposition 4.4 it is also shown that the map

�, as a convex monotone functional on the Orlicz space Lbu, is continuous and subdi¤erential on the
interior of its proper domain B, which is considerably large as it coincides with �int(Dom(Iu)), i.e.
the opposite of the interior of the proper domain of the integral functional Iu(f) = E[u(f)] in Lbu.
The minus sign is only due to the fact that �(B) is the seller indi¤erence price. In Corollary 4.6

we show that when B and the loss control W are "very nice" (i.e., they are in the special subspace

M bu of Lbu), the indi¤erence price � has also the Fatou property.
The regularity of the map � itself allows then for a very nice, short proof of some bounds on
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the indi¤erence price �(B) of a �xed claim B as a consequence of the Max Formula in Convex

Analysis.

Section 5 concludes the paper with a comparison with the existing literature on utility maxi-

mization in incomplete semimartingale markets with random endowment (the reader is deferred to

[BF06] and the literature therein for the case of no random endowment) and utility functions �nite

valued on R (see Hugonnier and Kramkov [HK04] and the literature therein for utility functions
�nite valued on R+):

2 The set up for utility maximization

In this section we recall the set up of [BF06] for the utility maximization problem in an Orlicz

space framework with zero random endowment, corresponding to the left�hand side of (1). Similar

arguments can then be used in the next section for the optimization problem in the presence of

a random endowment as in (2). In particular, the class of admissible integrands as well as the

relevant Orlicz spaces and dual variables are the same for both problems.

2.1 Admissible integrands, suitability and compatibility

Given a non�negative random variableW 2 FT , the domain of optimization for the primal problem
(2) is the following set of W�admissible strategies:

HW :=

�
H 2 L(S) j 9c > 0 such that

Z t

0

HsdSs � �cW;8t 2 [0; T ]
�
; (5)

where L(S) denotes the class of predictable, S-integrable processes. In other words, the random

variable W controls the losses in trading. This extension of the classic notion of admissibility,

which requires W = 1, was already used in Schachermayer ([S94] Section 4.1) in the context of the

fundamental theorem of asset pricing, as well as in Delbaen and Schachermayer [DS99].

In order to build a reasonable utility maximization, W should satisfy two conditions that are

mathematically useful and economically meaningful. The �rst condition depends only on the vector

process of traded assets S and guarantees that the set of W�admissible strategies is rich enough

for trading purposes:

De�nition 2.1. We say that a random variable W � 1 is suitable for the process S if for each

i = 1; : : : ; d, there exists a process Hi 2 L(Si) such that

P (f! j 9t � 0 such that Hi
t(!) = 0g) = 0 (6)

and ����Z t

0

Hi
sdS

i
s

���� �W; 8t 2 [0; T ]: (7)

The class of suitable random variables is denoted by S:

The second condition depends only on the utility function and measures to what extent the

investor accepts the risk of a large loss:
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De�nition 2.2. We say that a positive random variable W is strongly compatible with the utility

function u if

E[u(��W )] > �1 for all � > 0 (8)

and that it is compatible with u if

E[u(��W )] > �1 for some � > 0: (9)

Given a suitable and compatible random variable W , the �rst step to apply duality arguments

to problem (2) is to rewrite it in terms of an optimization over random variables, as opposed to an

optimization over stochastic processes. To this end, we de�ne the set of terminal values obtained

from W�admissible trading strategies as

KW =

(Z T

0

HtdSt j H 2 HW

)
; (10)

and consider the modi�ed primal problem

sup
k2KW

E[u(x+ k)]: (11)

The next step is to identify a good dual system and invoke some duality principle. Classically,

the system (L1; ba) has been successfully used when dealing with locally bounded traded assets.

In order to accommodate more general markets and inspired by the compatibility conditions above,

in the next section we argue instead for the use of an appropriate Orlicz spaces duality, naturally

induced by the utility function.

Remark 2.3. When S is locally bounded, W = 1 is automatically suitable and compatible (see

[BF05], Proposition 1), and we recover the familiar set of trading strategies. Therefore, the locally

bounded setup is a special case of our more general framework.

Remark 2.4. The conditions of suitability and compatibility on W put integrability restrictions on

the jumps of the semimartingale S. For a toy example that illustrates the various situations, see

[BF06, Example 4].

Remark 2.5. It is not di¢ cult (see for instance Biagini [B04], where the utility maximization for

possibly non locally bounded semimartingales was addressed with a new class of strategies) to

build a di¤erent set up, where the de�nitions of admissibility, suitability and compatibility are

formulated in terms of stochastic processes, instead of random variables, leading to an adapted

control of the losses from trading.

A real, adapted and nonnegative process Y could be de�ned to be suitable to S if for each

i = 1; : : : ; d, there exists a process Hi 2 L(Si) satisfying (6) and j
Z
HidSij � Y , and to be

compatible with u if

E[u(��Y �T )] > �1 for some � > 0;

where Y �t = sups�t jYsj is the maximal process of Y . The admissible integrands become then

HY := fH 2 L(S) j 9c > 0 such that
Z
HdS � �cY g:
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It is then easy to check that if a process Y satis�es the two requirements above, then the random

variable W := Y �T is suitable and compatible, in the sense of the De�nitions 2.1, 2.2, and that

HY � HW : This shows that this set up with processes does not achieve more generality than that

one with random variables and for this reason we continue to use the framework described in (5)

and in De�nitions 2.1 and 2.2.

Remark 2.6. Alternatively, the same de�nition of suitability as in the previous remark could be

used, but the process Y could be de�ned to be compatible with u if it satis�es the following less

stringent condition:

E[u(��tYt)] > �1 for some �t > 0; for all t 2 [0; T ]: (12)

The problem with this de�nition is that in general (12) does not guarantee the existence of a uniform

bound (in the form of a single random variable) on the stochastic integrals
R
HtdSt satisfying

the integrability condition required for the Ansel and Stricker Lemma [AS94]. To the best of

our knowledge, without this latter result one cannot show that the regular elements of the dual

variables are sigma martingale measures, a key property that justi�es the interpretation of the dual

variables as pricing measures (see the subsequent Section 2.3 or [DS98], [B04, Prop. 6], [BF05,

Prop. 6] and [BF06, Prop. 19]).

2.2 The Orlicz space framework

This new framework for utility maximization was �rst introduced by Biagini [B08] and then con-

siderably expanded in [BF06], upon which this section is mostly based. The key observation is

that the function bu : R! [0;+1) de�ned as

bu(x) = �u(�jxj) + u(0);
is a Young function (a reference book is [RR91]). Thus, its corresponding Orlicz space

Lbu(
;F ; P ) = ff 2 L0(
;F ; P ) j E[bu(�f)] < +1 for some � > 0g;

is a Banach space (and a Banach lattice) when equipped with the Luxemburg norm

Nbu(f) = inf
�
c > 0 j E

�bu�f
c

��
� 1
�
: (13)

Since the probability space (
;F ; P ) is �xed throughout the paper, set Lp := Lp(
;F ; P ), p 2
[0;+1]; and Lbu := Lbu(
;F ; P ): Under our assumptions on the utility u, it is not di¢ cult to see
that L1 � Lbu � L1. Next consider the subspace of "very integrable" elements in Lbu

M bu := ff 2 Lbu j E[bu(�f)] < +1 for all � > 0g:

Due to the fact that bu is continuous and �nite on R, M bu contains L1 and moreover it coincides

with the closure of L1 with respect to the Luxemburg norm. However, the inclusion M bu � Lbu
is in general strict, since bounded random variables are not necessarily dense in Lbu (see [RR91,
Prop. III.4.3 and Cor. III.4.4]). This will play a central role in our work.
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As observed in [B08] and [BF06], the Young function bu carries information about the utility on
large losses, in the sense that for � > 0 we have

E[bu(�f)] < +1 () E[u(��jf j)] > �1; (14)

a characterization that will be repeatedly used in what follows. For instance, using (14) it is easy

to see that

� a positive random variable W is strongly compatible (resp. compatible) with the utility func-

tion u if and only if W 2M bu (resp. W 2 Lbu).
When W 2 Lbu, the negative part of each element in KW belongs to Lbu, but in general we do

not have the inclusion KW � Lbu.
From the de�nition of � we know that �(0) = u(+1); � is bounded from below and it satis�es

limy!+1
�(y)
y = +1: This limit is a consequence of u being �nite valued on R. Indeed, from the

inequality �(y) � u(x)�xy for all x; y 2 R, we get lim infy!+1
�(y)
y � lim infy!+1

u(x)
y �x = �x

for all x 2 R:
The convex conjugate of bu, called the complementary Young function in the theory of Orlicz

spaces, is denoted here by b�, since it admits the representation
b�(y) = ( 0 if jyj � �

�(jyj)� �(�) if jyj > �
(15)

where � � 0 is the right derivative of bu at 0, namely � = D+bu(0) = D�u(0), and �(�) = u(0). If

u is di¤erentiable, note that � = u0(0) and it is the unique solution of the equation �0(y) = 0.

From (15) it then follows that b� is also a Young function, which induces the Orlicz space Lb�
endowed with the Orlicz (dual) norm

kgkb� = supfE[jfgj] j E[bu(g)] � 1g:
As before, L1 � Lb� � L1. Moreover, L� is a dual space, as

(M bu)� = Lb�; (16)

in the sense that if Q 2 (M bu)� is a continuous linear functional on M bu, then there exists a unique
g 2 Lb� such that

Q(f) =

Z



fgdP; f 2M bu;
with

kQk(M bu)� := sup
Nbu(f)�1

jQ(f)j = kgkb�:
The characterization of the topological dual for the larger space Lbu is more demanding than (16).
For the complementary pair of Young functions (bu; b�), it follows from [RR91, Cor. IV.2.9] that

each element Q 2 (Lbu)� can be uniquely expressed as
Q = Qr +Qs;
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where the regular part Qr is given by

Qr(f) =

Z



fgdP; f 2 Lbu;
for a unique g 2 Lb�, and the singular part Qs satis�es

Qs(f) = 0; 8f 2M bu: (17)

In other words,

(Lbu)� = (M bu)� � (M bu)?
where (M bu)? = fz 2 (Lbu)� j z(f) = 0;8f 2M bug denotes the annihilator of M bu.
Consider now the concave integral functional Iu : Lbu ! [�1;1) de�ned as

Iu(f) := E[u(f)]:

As usual, its e¤ective domain is denoted by

Dom(Iu) :=
n
f 2 Lbu j E[u(f)] > �1o :

It was shown in [BF06, Lemma 17] that thanks to the selection of the appropriate Young functionbu associated with the utility function u, the norm of a nonnegative singular element z 2 (M bu)?
satis�es

kzk(Lbu)� := sup
Nbu(f)�1

z(f) = sup
f2Dom(Iu)

z(�f): (18)

2.3 Loss and dual variables

From now on, the loss controls W are assumed suitable and compatible, i.e. W 2 S\Lbu, and will
simply be referred to as loss variables. Given such W , the cone

CW = (KW � L0+) \ Lbu;
corresponds to random variables that can be super�replicated by trading strategies in HW and

that satisfy the same type of integrability condition of W . The polar cone of CW , which will play

a role in the dual problem, is

(CW )0 :=
n
Q 2 (Lbu)� j Q(f) � 0; 8f 2 CW

o
; (19)

and it satis�es (CW )0 � (Lbu)�+, since (�Lbu+) � CW . Therefore, all the functionals of interest are
positive and the decomposition Q = Qr +Qs enables the identi�cation of Qr with a measure with

density dQr

dP 2 Lb�+ � L1+. The subset of normalized functionals in (CW )0 is de�ned by
MW := fQ 2 (CW )0 j Q(1
) = 1g: (20)

Using the notation above, we see that this normalization condition reduces to Qr(1
) = 1, since

Qs 2 (M bu)? and thus vanishes on any bounded random variable. In other words, the regular part

of any element in MW is a true probability measure with density in Lb�+. Moreover, it was shown
in [BF06, Proposition 19], that

MW \ L1 =M� \ L
b�; (21)
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where

M� =

�
Q(1
) = 1;

dQ

dP
2 L1+ j S is a � �martingale w.r.t. Q

�
consists of all the P�absolutely continuous �-martingale measures for S, i.e. of those Q � P

for which there exists a process � 2 L(S) such that � > 0 and the stochastic integral
R
�dS is a

Q�martingale. Such probabilities Q were introduced in the context of Mathematical Finance by

Delbaen and Schachermayer in the seminal [DS98], which the reader is referred to for a thorough

analysis of their �nancial signi�cance as pricing measures.

From (21) it follows that the regular elements of the normalized set MW coincide with the

�-martingale measures for S that belong to Lb�. In particular this shows that the (possibly empty)
setMW \ L1 does not depend on the particular loss variable W .

2.4 Utility optimization with no random endowment

The following theorem is a reformulation of [BF06, Theorem 21]. When S is locally bounded,

a duality formula similar to (22) - but with no singular components - holds true for all utility

functions in the class considered in this paper. This latter fact is well known and was �rst shown

in [BeF02].

Theorem 2.7. Suppose that there exists a loss variable W satisfying

sup
H2HW

E

"
u

 
x+

Z T

0

HtdSt

!#
< u(+1):

ThenMW is not empty and

sup
H2HW

E

"
u

 
x+

Z T

0

HtdSt

!#
= min

�>0; Q2MW

�
�x+ E

�
�

�
�
dQr

dP

��
+ �kQsk

�
: (22)

When W 2 M bu, then the set MW can be replaced by M� \ Lb� and no singular term appears in

the duality formula above.

The last statement in the theorem follows from the observation that when W 2 M bu then the
regular component Qr of Q 2MW is already inMW (see [BF06, Lemma 41]). Since kQsk � 0 this
immediately implies that the minimum in (22) is reached on the set

�
Qr j Q 2MW

	
=M� \Lb�.

3 Utility optimization with random endowment

3.1 Conditions on the claim

We now turn to the right�hand side of (1) and consider the optimization problem

sup
H2HW

E

"
u

 
x+

Z T

0

HtdSt �B
!#

; (23)

where B 2 FT is a liability faced at terminal T .
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Without loss of generality, let x = 0. The case with non null initial endowment can clearly be

recovered by replacing B with (B�x). In view of the substitution of terminal wealths
R T
0
HtdSt 2

KW by random variables f 2 CW � Lbu, we require that B satis�es

E[u(f �B)] < +1; 8f 2 Lbu; (24)

so that the concave functional IBu : L
bu ! [�1;1) given by

IBu (f) := E[u(f �B)]

is well de�ned for such claims.

Remark 3.1. The set of claims satisfying this condition is quite large. In fact, by monotonicity

and concavity of u,

E[u(f �B)] = E[u(f � (B+ �B�))] � E[u(f +B�)] � u(E[f ] + E[B�]);

where the last step follows from Jensen�s inequality. Therefore, since f 2 Lû � L1, one obtains

that a simple su¢ cient condition for (24) is that B� 2 L1.
Obviously, when the utility function is bounded above (as for example in the exponential case)

the condition (24) is satis�ed by any claim.

A second natural condition on B is that it does not lead to prohibitive punishments when the

agent chooses the trading strategy H � 0 2 HW . In other words, we would like to impose that

E[u(�B)] > �1. Since the utility function is �nite and increasing, this is equivalent to

E[u(�B+)] > �1; (25)

which in turn implies that �B+ 2 Dom(Iu) and consequently B+ 2 Lû, in view of (14). Be aware
that B+ 2 Lû does not necessarily imply (25).

However, for the main duality result we also need that the claim B satis�es:

E[u(�(1 + �)B+)] > �1; for some � > 0: (26)

This condition, stronger than (25), is equivalent to requiring that the random variable (�B+)
belongs to int(Dom(Iu)); the interior in Lbu of the e¤ective domain of Iu: This is a consequence
of Lemma 30 in [BF06], which in turn is based on the de�nition of the Luxemburg norm on Lbu
and on a simple convexity argument. In addition to its technical relevance (shown in Lemma 3.4),

another reason for adopting (26) is explained in Remark 3.5.

De�nition 3.2. The set of admissible claims Au consists of FT measurable random variables B

satisfying (24) and (26).

The conditions (24), (26) do not really capture the risks corresponding to B�, which are gains

for the seller of the claim. For example, it is quite possible to have B 2 Au and E[u(�"B�)] = �1
for all " > 0 (simply take B� 2 L1nLû). This would mean that a buyer using the same utility
function u, investment opportunities S and control random variable W , would incur losses leading
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to an in�nitely negative expected utility simply by holding any fraction of the claim and doing no

other investment. Such undesirable outcome can be avoided by the more stringent condition

E[u(�"B�)] > �1; for some " > 0; (27)

which is equivalent to B� 2 Lû. Since the focus is on the problem faced by the seller of the claim

B, we refrain from assuming (27), until Section 4 where B will belong to the set

B := Au \ Lbu = fB 2 Lbu j E[u(�(1 + �)B+)] > �1 for some � > 0g: (28)

In any event, the potential buyers for B will likely not have the same investment opportunities,

utility function and loss tolerance as the seller, leading to entirely di¤erent versions of (1).

For example, suppose that the seller has an exponential utility us(x) = �e�x and the buyer
has quadratic utility ub(x) = �x2 for x � �1, then prolonged so that it is bounded above and
satis�es all the other requirements. Then take B so that B+ has an exponential distribution with

parameter � = 2 and B� has a density c
1+x4 ; x � 0, where c is the normalizing constant. It is

easy to check that B satis�es (24) and (26) for us and that selling B is very attractive, since the

tail of the distribution of B� (the gain for the seller) is much bigger than that of B+ (the loss

for the seller). B� has no �nite exponential moment, therefore it violates (27) and would clearly

be unacceptable if the buyer had exponential preferences. However the quadratic tolerance of the

losses of ub accounts for a well posed maximization problem with B even for the buyer.

3.2 The maximization

The �rst step in our program consists in showing that optimizing over the cone CW leads to the

same expected utility as optimizing over the set of terminal wealths KW .

Lemma 3.3. If B satis�es (24) and (25) then

sup
k2KW

E[u(k �B)] = sup
f2CW

E[u(f �B)]: (29)

Proof. Since CW � (KW � L0+) and the utility function is monotone increasing,

sup
f2CW

E[u(f �B)] � sup
g2(KW�L0+)

E[u(g �B)] � sup
k2KW

E[u(k �B)]: (30)

Since k � 0 2 KW ,

sup
k2KW

E[u(k �B)] � E[u(�B)] > �1:

by (25). Pick any k 2 KW satisfying E[u(k � B)] > �1. Consider kn = k ^ n, which is in CW

since W 2 Lbu (this is the only assumption needed on W here). Then

u(kn �B) = u(k+ ^ n�B)Ifk�0g + u(�k� �B)Ifk<0g � u(�B) + u(�k� �B)Ifk<0g

and the latter is integrable. An application of the monotone convergence theorem gives E[u(kn �
B)]% E[u(k �B)], which implies that

sup
k2KW

E[u(k �B)] � sup
f2CW

E[u(f �B)];

11



and completes the proof.

The next step in the program is to establish that the functional IBu has a norm continuity point

contained in the cone of interest CW .

Lemma 3.4. Suppose that B satis�es (24) and (25). Then the concave functional IBu is norm

continuous on the interior of its e¤ective domain. Moreover, if B 2 Au then there exists a norm
continuity point of IBu that belongs to CW .

Proof. Since IBu < +1; the functional IBu is proper, monotone and concave. The �rst sentence

in the Lemma thus follows from the Extended Namioka-Klee Theorem (see [RS06] or [BF07]).

Denoting the unit ball in Lû by S1, it follows rather easily from a convexity argument that the

hypothesis (26) on B+ implies that

�B+ + �

1 + �
S1 � Dom(Iu); (31)

and therefore �
1+�S1 � Dom(I

B
u ). Therefore, any element of

�
2(1+�)S1 \ (�L

bu
+) is then in C

W and

a continuity point for IBu .

Remark 3.5. At �rst sight, the condition (26) on the positive part B+ appears to be an ad-hoc

hypothesis imposed for the sake of proving the previous technical lemma. We argue, however, that

(26) is in fact a natural condition to impose on a �nancial liability in this context. Indeed, if the

claim B satis�es only E[u(�B+)] > �1, it may happen - contrary to (31) - that

E[u(�B+ � c)] = �1 for all constants c > 0

as shown in the example below, which would restrict the possibility of any signi�cative trading.

Example 3.6. Consider the smooth function

u(x) =

(
�e(x�1)2 x � 0

�2e�x+1 + e x > 0

as utility function u (the particular expression of u for x > 0 is however irrelevant). Consider

now a (positive) claim B with distribution d�B = k e
�x2�2x

x2+1 Ifx>0gdx, where k is the normalizing

constant. Then,

E[u(�B)] =
Z +1

0

�e(�x�1)
2

k
e�x

2�2x

x2 + 1
dx > �1

but for any c > 0,

E[u(�B � c)] =
Z +1

0

�e
2cx+(c+1)2k

x2 + 1
dx = �1:

3.3 Conjugate functionals

As already discussed, the condition B 2 Au on the claim B does not necessarily imply that B 2 Lbu.
Therefore, we need appropriate extensions of linear functionals on Lbu.
Though we sketch the proof for the sake of completeness, this extension is morally straightfor-

ward. In fact, it is de�ned in the same way as the expectation E[g] is de�ned when g is bounded

from below, instead of bounded. In this case, g� 2 L1 and

E[g] := supfE[f ] j f 2 L1; f � gg = lim
n
E[g ^ n]

12



Accordingly, let us consider the convex cone of random variables with negative part in Lbu:
Lbuneg :=

n
f 2 L0 j f� 2 Lbuo = �f 2 L0 j E[u(��f�)] > �1; for some � > 0	 ;

and notice that this cone contains KW ; for any loss variable W . For any Q 2 (Lbu)�+ we de�nebQ : Lbuneg ! R [ f+1g by

bQ(g) , supnQ(f) j f 2 Lbu and f � go : (32)

Lemma 3.7. If Q 2 (Lbu)�+ then
1. bQ is a well-de�ned extension of Q. It is a positively homogenous, additive (with the convention
+1+ c = +1 for c 2 R [ f+1g), monotone functional on the cone Lbuneg. In particular, if
g 2 Lbuneg; h 2 Lbu then bQ(g + h) = bQ(g) +Q(h).

2. Q 2 (CW )0 if and only if bQ(k) � 0 for all k 2 KW .

3. If g 2 Lbuneg is such that E[u(g)] > �1, then
kQsk � �cQs(g) (33)

4. If bQ(g) is �nite, then bQ(g) = E[dQr

dP g] +
cQs(g).

Proof. The �rst two statements and item 4 follow rather directly from the de�nitions of bQ and

CW . We only prove additivity of bQ. Fix then g1; g2 2 Lbuneg. We want to show that bQ(g1 + g2) =bQ(g1) + bQ(g2): When fi 2 Lbu, i = 1; 2; satisfy fi � gi,
bQ(g1) + bQ(g2) = sup

fi�gi
fQ(f1) +Q(f2)g � sup

f�g1+g2
Q(f) = bQ(g1 + g2):

To show the opposite inequality, assume �rst that gi � 0. Fix f 2 Lbu+, f � g1 + g2. Then

f ^ gi 2 Lbu, i = 1; 2; and, moreover, f � f ^ g1 + f ^ g2. Therefore
Q(f) � Q(f ^ g1) +Q(f ^ g2) � bQ(g1) + bQ(g2) for all f 2 Lbu+; f � g1 + g2

so that bQ(g1 + g2) � bQ(g1) + bQ(g2). To treat the case g1 and g2 not necessarily positive, observe
that when g 2 Lbuneg; h 2 Lbu :

bQ(g + h) = sup
n
Q(f) j f 2 Lbu, f � g + ho

= sup
n
Q(f) j f 2 Lbu, f � go+Q(h) = bQ(g) +Q(h);

As a consequence, bQ(gi) = bQ(g+i )�Q(g�i ) and bQ(g1+ g2) = bQ(g+1 + g+2 )�Q(g�1 + g�2 ). Collecting
these relations,

bQ(g1 + g2) = bQ(g+1 + g+2 )�Q(g�1 + g�2 ) � bQ(g+1 ) + bQ(g+2 )�Q(g�1 + g�2 ) = bQ(g1) + bQ(g2):
Item 3 follows from �g� 2 Dom(Iu) and equation (18):

kQsk � Qs(g�) � Qs(g�)� cQs(g+) = �cQs(g):
13



Finally, when B satis�es (25) the convex conjugate JBu : (Lbu)� ! R [ f+1g of the concave
functional IBu is de�ned as

JBu (Q) := sup
f2Lbu fE[u(f �B)]�Q(f)g ; Q 2 (Lbu)�: (34)

The following Lemma gives a representation of JBu .

Lemma 3.8. 1. If B 2 Lbu and Q 2 (Lbu)�+ then
JBu (Q) = Q(�B) + E

�
�

�
dQr

dP

��
+ kQsk: (35)

2. If B satis�es (24) and (25) and Q 2 (Lbu)�+, then
JBu (Q) = bQ(�B) + E ���dQr

dP

��
+ kQsk:

Proof. 1. This is an elementary consequence of the representation result proved in [K79, Theo-

rem 2.6]. In fact, from B 2 Lbu,
JBu (Q) = sup

f2Lbu fE[u(f �B)]�Q(f)g
= sup

g2Lbu fE[u(g)]�Q(g)g �Q(B)

and in the cited Theorem, Kozek proved that

sup
g2Lbu fE[u(g)]�Q(g)g = E

�
�

�
dQr

dP

��
+ sup
g2Dom(Iu)

Qs(�g)

so that the thesis in (35) is enabled by (18).

2. The thesis follows from the equality

sup
G�B;G2Lbu

(
sup
f2Lbu fE[u(f �G)]�Q(f)g

)

= sup
f2Lbu

(
sup

G�B;G2LbufE[u(f �G)]�Q(f)g
)
:

Indeed, thanks to (35), the left hand side gives

sup
G�B;G2Lbu

(
sup
f2Lbu fE[u(f �G)]�Q(f)g

)

= sup
G�B;G2Lbu J

G
u (Q) = bQ(�B) + E ���dQr

dP

��
+ kQsk;

while the right hand side gives

sup
f2Lbu

(
sup

G�B;G2LbufE[u(f �G)]�Q(f)g
)
= sup

f2LbufE[u(f �B)]�Q(f)g = J
B
u (Q): (36)
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The �rst equality in (36) holds thanks to the following approximation argument. For each

f 2 Lbu such that E[u(f � B)] > �1 let Gn := B+ � (f� + n) ^ B� 2 Lbu and An :=
fB� � f� + ng. Our assumptions imply that u(f � B) and u(�B+) are integrable and so
from

u(f �Gn) = u(f �B)1An
+ u(f �B+ + f� + n)1Ac

n
� u(f �B)1An

+ u(�B+)1Ac
n

we deduce E[u(f � Gn)] > �1. Since �Gn " �B, the monotone convergence theorem
guarantees supnE[u(f �Gn)] = E[u(f �B)].

3.4 The dual optimization and a new primal domain

Before establishing the main duality result, let us focus on dual optimizations of the form

inf
�>0;Q2N

�
E

�
�

�
�
dQr

dP

��
+ � bQ(�B) + �kQsk� ; (37)

where N is a convex subset of (Lbu)�+. Problems of this type (but for N � L1+ and B = 0) were

originally solved by Ruschendorf [R84]. A general strategy for tackling such problems is to consider

the minimizations over � and over Q separately. Accordingly, in the next Proposition we �x � > 0

and explore the consequences of optimality in Q. The result is the analogue of [BF06, Prop 25]

but in the presence of the claim B and the corresponding extended functionals bQ.
The presence of the scaling factor � in the expectation term in (37) leads us to consider the

convex set:

L� = fQ probab, Q� P j E
�
�

�
�
dQ

dP

��
< +1 for some � > 0g:

Clearly
n
dQ
dP j Q 2 L�

o
� L

b�
+ � L1+, but the condition

dQ
dP 2 L

b�
+ does not in general imply

E
h
�(dQdP )

i
< +1, nor Q 2 L�. Indeed, the utility function may be unbounded from above, so

that �(0) = +1 is possible.

Remark 3.9. The fact that the set L� is convex requires a brief explanation, since �(0) = +1
is possible. Let Qy = yQ1 + (1 � y)Q2 , y 2 (0; 1); be the convex combination of any couple of
elements in L�, take �i > 0 satisfying E

h
�
�
�i
dQi

dP

�i
< 1; i = 1; 2; and de�ne zy as the convex

combination of 1
�1
and 1

�2
, i.e.: zy := y 1

�1
+ (1� y) 1�2 2 (0;1). As a consequence of the convexity

of the function (z; k) ! z�( 1zk) on R+ � R+(which has been pointed out by [SW05], Section 3)
we deduce

E

�
zy�

�
1

zy

dQy
dP

��
� y 1

�1
E

�
�

�
�1
dQ1
dP

��
+ (1� y) 1

�2
E

�
�

�
�2
dQ2
dP

��
<1:

Assumption (A) The utility function u : R! R is strictly increasing, strictly concave, continu-
ously di¤erentiable and it satis�es the conditions

lim
x#�1

u0(x) = +1, lim
x"1

u0(x) = 0 (38)

L� = fQ probab, Q� P j E
�
�

�
�
dQ

dP

��
< +1 for all � > 0g: (39)
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The condition expressed in (39) coincides with assumption (3) in [BF06]. A detailed discussion

on assumption (A) and the relationship of (39) with the condition of Reasonable Asymptotic

Elasticity introduced by Schachermayer [S01] can be found in [BF06], [BF05]. We stress that

this assumption is needed only when dealing with the existence of optimal solutions (i.e. only in

Propositions 3.10, 3.11, 3.18, and in the second part of Theorem 3.15).

Proposition 3.10. Suppose that the utility u satis�es assumption A and that the claim B satis�es

(24) and (25) . Fix � > 0 and suppose that N � (Lbu)�+ is a convex set such that for any Q 2 N
we have Qr 2 L�. If Q� 2 N is optimal for

inf
Q2N

�
E

�
�

�
�
dQr

dP

��
+ � bQ(�B) + �kQsk� < +1 (40)

then, 8Q 2 N with bQ(�B) < +1
EQr

�

�
�0
�
�
dQr�
dP

��
+ bQ�(�B) + kQs�k � EQr

�
�0
�
�
dQr�
dP

��
+ bQ(�B) + kQsk: (41)

Proof. If Q� is optimal then cQ�(�B) must be �nite. We can assume � = 1, the case with general
� being analogous, since condition (39) holds true. Denoting the optimal functional by Q1, �x

any Q with bQ(�B) �nite and consider Qx = xQ1 + (1� x)Q. Also denote by V (Q) the objective
function to be minimized in (40) when � = 1. Consider the convex function of x

F (x) := E

�
�

�
dQrx
dP

��
+ xcQ1(�B) + (1� x) bQ(�B) + kQsxk

then F (1) = V (Q1) and F (x) � V (Qx) since cQx(�B) is convex in x. Taking this inequality into
account and given that Q1 is a minimizer of V (Q),

F 0(1�) � V 0(Q1�) � 0:

Now, as in [BF06, Prop 25], it can be shown that

F 0(1�) = E

��
dQr1
dP

� dQ
r

dP

�
�0
�
dQr1
dP

��
+ cQ1(�B)� bQ(�B) + kQs1k � kQsk

and since this quantity must be non positive we conclude the proof.

Next we �x Q and explore the consequences of optimality in �. The result is identical to [BF06,

Prop 26], which we reproduce here for readability:

Proposition 3.11. Suppose that the utility u satis�es assumption A: If Q is a probability measure

in L� then for all c 2 R the optimal �(c;Q) solution of

min
�>0

�
E

�
�

�
�
dQ

dP

��
+ �c

�
(42)

is the unique positive solution of the �rst order condition

E

�
dQ

dP
�0
�
�
dQ

dP

��
+ c = 0: (43)
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The random variable f� := ��0(�(c;Q)dQdP ) 2
�
f 2 L1(Q) j EQ[f ] = c

	
satis�es u(f�) 2 L1(P )

and

min
�>0

�
E

�
�

�
�
dQ

dP

��
+ �c

�
= sup

�
E[u(f)] j f 2 L1(Q) and EQ[f ] � c

	
= E[u(f�)] < u(1) (44)

Therefore, whenever bQ(�B) is �nite, we can set c = bQ(�B)+kQsk and conclude from (44) that
the minimization of the objective function in (37) with respect to � > 0 for a �xed Q leads to the

same value of a utility maximization over integrable functions satisfying EQ[f ] � bQ(�B) + kQsk.
Motivated by these results, we de�ne the following set of functionals and corresponding domain

for utility maximization:

De�nition 3.12. For any B satisfying (24) and (25) let

NW
B := fQ 2MW j Qr 2 L�; bQ(�B) 2 Rg (45)

and

KW
B := ff 2 L0 j f 2 L1(Qr); EQr [f ] � cQs(�B) + kQsk; 8Q 2 NW

B g; (46)

with the corresponding optimization problem

UWB := sup
f2KW

B

E[u(f �B)]: (47)

Remark 3.13. (i) Note that the sets NW
B and KW

B depend also on � (and thus on the utility

u), but the dependence is omitted for convenience of notation. In the particular case B 2 Lbu
however bQ(�B) = Q(�B), so that NW

B does not depend on B and it coincides with the set of dual

functionals used in [BF06]:

NW = fQ 2MW j Qr 2 L�g: (48)

While we are going to treat the utility maximization with random endowment for general B, we

will focus on B 2 Lbu in the indi¤erence price section, where the set of dual functionals will be
simply NW . Note also that each element in NW

B has non zero regular part.

(ii) If �(0) < +1; then Q 2 L� i¤ Q is a probability s.t. dQ
dP 2 Lb�+. As explained in Section

2.3 the regular part of each element inMW is already in Lb�+, so that from (45) we get:

NW
B := fQ 2MW j Qr 6= 0; bQ(�B) 2 Rg:

(iii) When Assumption (A) is satis�ed then

NW
B := fQ 2MW j Qr 6= 0; E

�
�

�
dQr

dP

��
< +1; bQ(�B) 2 Rg:

The utility optimization over the modi�ed domain KW
B can be easily related with the original

utility optimization over terminal wealths KW .

Lemma 3.14. Suppose that B satis�es (24) and (25) and that NW
B 6= ;. Then KW � KW

B and

the following chain of inequalities holds true

sup
k2KW

E[u(k �B)] � UWB � inf
�>0;Q2NW

B

�
� bQ(�B) + E ����dQr

dP

��
+ �kQsk

�
<1

17



Proof. The �rst inequality is a consequence of KW � KW
B . To show this inclusion, let k 2 KW .

By Lemma 3.7 item 2, bQ(k) � 0 for all Q 2 MW . The assumptions on B imply that B+ 2 Lbu so
that (�B) 2 Lbuneg: In addition, KW � Lbuneg implies k � B 2 Lbuneg. Applying Lemma 3.7, item 1,

we have for each Q 2 NW
B

bQ(k �B) = bQ(k) + bQ(�B) � bQ(�B) < +1:
Then bQ(k �B) is �nite and, by Lemma 3.7 item 4, the above inequality becomes:

EQr [k �B] + cQs(k �B) � EQr [�B] + cQs(�B):
Given that �cQs(k �B) � kQsk from (33)

EQr [k �B] � EQr [�B] + cQs(�B) + kQsk
and thus, cancelling EQr [�B], we get k 2 KW

B .

To prove the second inequality, the (pointwise) Fenchel inequality gives

u(k �B) � Z(k �B) + �(Z)

for every positive random variable Z and k 2 L0: Let Q 2 NW
B and take any � > 0: By setting

Z = �dQ
r

dP , �xing k 2 K
W
B and taking expectations we have

E[u(k �B)] � �EQr [k �B] + E
�
�

�
�
dQr

dP

��
:

From the de�nition of KW
B

EQr [k] � cQs(�B) + kQsk
whence

E[u(k �B)] � �( bQ(�B) + kQsk) + E ����dQr
dP

��
:

The expression E
h
�
�
�dQ

r

dP

�i
may be equal to +1; but for each Q 2 NW

B there is a positive �

for which it is �nite. The thesis then follows.

3.5 The main duality result

Theorem 3.15. Fix a loss variable W and a liability B 2 Au. If

sup
H2HW

E

"
u

 Z T

0

HtdSt �B
!#

< u(+1) (49)

then NW
B is not empty and

sup
H2HW

E

"
u

 Z T

0

HtdSt �B
!#

= UWB

= min
�>0; Q2NW

B

�
� bQ(�B) + E ����dQr

dP

��
+ �kQsk

�
: (50)

The minimizer �B is unique, while the minimizer QB is unique only in the regular part QrB.
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Suppose in addition that the utility u satis�es assumption A: Then,

UWB = E[u(fB �B)]; (51)

where the unique maximizer is

fB =

�
��0(�B

dQrB
dP

) +B

�
2 KW

B (52)

and satis�es

EQr
B
[fB ] =dQsB(�B) + kQsBk: (53)

Proof. First observe that it follows from (29) that

sup
H2HW

E

"
u

 Z T

0

HtdSt �B
!#

= sup
k2KW

E[u(k �B)] = sup
f2CW

E[u(f �B)]:

Moreover, Lemma 3.4 enables the application of Fenchel duality theorem to get

sup
f2CW

E[u(f �B)] = sup
f2CW

IBu (f) = min
Q2(CW )0

JBu (Q)

= min
Q2(CW )0

n
E[�(Qr)] + bQ(�B) + kQsko

where the last equality is guaranteed by Lemma 3.8. Now if the optimal Q had Qr = 0, then we

would have

sup
f2CW

E[u(f �B)] = �(0) + bQs(�B) + kQsk � u(+1);
since cQs(�B)+kQsk � 0, according to (33), and �(0) = u(1). Because this contradicts condition
(49), Qr 6= 0 and a re-parametrization of the domain of minimization in terms of NW

B leads to

sup
f2CW

E[u(f �B)] = min
�>0; Q2NW

B

�
� bQ(�B) + E ����dQr

dP

��
+ �kQsk

�
:

Uniqueness of �B and QrB follow from strict convexity of the dual objective function in � and

Qr. However, the dependence of the dual objective function on Qs is mixed: it is linear in the

norm k � k-part due to (18) (see [BF06, Proposition 10] and generally convex in the term cQs(�B),
although this term may also reduce to a linear one in the special case B 2 Lbu. Therefore, the
optimal singular functional might not be unique. Thanks to Lemma 3.14, the equalities

sup
k2KW

E[u(f �B)] = UWB = min
�>0; Q2NW

B

�
� bQ(�B) + E ����dQr

dP

��
+ �kQsk

�
are immediate. Under assumption A; the expression for fB can be derived by observing that any

minimizer QB is obtained as the minimizer of

min
Q2NW

B

�
�B bQ(�B) + E ����B dQr

dP

��
+ �BkQsk

�
and from a standard combination of the results in Propositions 3.10 and 3.11.

Corollary 3.16. Whenever B 2 B = Au \ Lbu we have that bQ(�B) = �Q(B) in (50) and

NW
B = NW . Moreover, if both W and B are in M bu, then NW

B can be replaced by the set M� \L�
of �- martingale probabilities with �nite generalized entropy and no singular term appears in (50).
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Proof. The �rst statement is clear from the de�nition of bQ. For the second statement, notice that
when W 2M bu then the regular component Qr of Q 2MW is already inMW (see [BF06, Lemma

41]). If B is in M bu as well, then Qs(B) = 0. Since kQsk � 0, the minimum must be achieved on

the set
�
Qr j Q 2 NW

B

	
=M� \ L�.

We can see from (50) that the singular part Qs in the dual objective function plays a double

role. Its norm kQsk sums up the generic risk of the high exposure in the market generated by S.
When the agent sells B, there is obviously an extra idiosyncratic exposure. Given our very general

assumptions on B, this extra exposure may also be extremely risky, and this is expressed by the

term cQs(�B). Of course, the presence of �high exposure" terms in the dual does not imply that
the actual minimizer QB must have a non-zero singular part. However, in the next section we

construct some examples displaying the more interesting situation where QsB is necessarily non-

zero. In view of (53), a su¢ cient condition for this is EQr
B
[fB ] > 0. The condition is by no means

necessary, since it could happen that QsB 6= 0 but kQsBk+dQsB(�B) = 0 in (53).
It is interesting to investigate and possibly derive more accurate bounds for cQs(�B). The next

Proposition gives a priori good bounds for this singular contribution.

Proposition 3.17. For any B 2 Au set

L = supf� > 0 j E[bu(�B+)] < +1g
and �x any Q 2 NW

B . Then cQs(�B) � � 1
L
kQsk: (54)

If B� is also in Lbu, set
l = supf� > 0 j E[bu(�B�)] < +1g:

Then

� 1
L
kQsk � Qs(�B) � 1

l
kQsk (55)

and in particular we recover again Qs(B) = 0 when B 2M bu.
Proof. From (26), E[u(�(1 + ")B+)] < +1, so L � 1 + �. For any b < L, (33) gives kQsk �
bQs(B+) and therefore cQs(�B) � �Qs(B+) � �1

b
kQsk

whence the desired cQs(�B) � � 1
LkQ

sk. To prove the right inequality in (55), observe that the
additional hypothesis on B� means l > 0 and ��B� 2 Dom(Iu) for any � < l. Hence

Qs(�B) � Qs(B�) = 1

�
Qs(�B�) � 1

�
kQsk for all � < l

The result in Theorem 3.15 does not guarantee in full generality that the optimal random

variable fB 2 KW
B can be represented as terminal value from an investment strategy in L(S), that

is, fB =
R T
0
HtdSt. The next proposition presents a partial result in this direction.

Proposition 3.18. Suppose that the utility u satis�es assumption A: Under the same hypotheses

of Theorem 3.15, if QsB = 0 and Q
r
B � P , then fB can be represented as terminal wealth from a

suitable strategy H.
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Proof. It follows from Theorem 3.15 that fB must satisfy

EQr [fB ] � cQs(�B) + kQsk 8Q 2 NW
B

and equality must hold at any optimal QB , according to (53). When the optimal QB has zero

singular part, then it is a �-martingale measure with �nite entropy, according to (21). This being

the case, it is easy to see that the dual problem could be reformulated as a minimum overM�\L�.
In this simpli�ed setup, one can show exactly as in [BF05, Therem 4, Theorem 1 (d)] that the

optimal fB belongs in fact to \
Q2M�\L�

ff j f 2 L1Q;EQ[f ] � 0g

and can be represented as terminal wealth from a suitable strategy H.

3.6 Exponential utility

For an exponential utility function u(x) = �e�
x; 
 > 0, we have

�(y) =
y



log

y



� y


bu(x) = e
jxj � 1

Using (14), we see that in this case M bu consists of those random variables that have all the

(absolute) exponential moments �nite, while the larger space Lbu corresponds to random variables

that have some �nite exponential moment.

Moreover, since b�(y) = (�(jyj)� �(
))Ifjyj>
g and �(0) <1, we have that
E[b�(f)] <1 () E[�(jf j)] <1: (56)

Finally, since b� in this case satis�es the �2�growth condition (see [RR91, pp 22, 77]), the subspace
M

b� coincides with Lb�, that is, E[b�(�f)] <1 for some � > 0 if and only if E[b�(�f)] <1 for all

� > 0.

The duality result for an exponential utility, which clearly satis�es Assumption (A), follows

directly as a corollary of our main Theorem 3.15. Since u(1) = 0; the condition (24) automatically
holds for all FT measurable random variables B and furthermore,

L� = fQ probab; Q� P j E
�
�

�
dQ

dP

��
< +1g = fQ probab; Q� P j E

�b��dQ
dP

��
< +1g:

Corollary 3.19. Suppose that the random endowment B 2 L0(
;FT ; P ) satis�es

E[e
(1+�)B ] < +1 for some � > 0

and suppose that there exists a loss variable W satisfying

sup
H2HW

E
h
�e�
(

R T
0
HtdSt�B)

i
< 0: (57)
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Then NW
B is not empty and

sup
H2HW

E
h
�e�
(

R T
0
HtdSt�B)

i
=

� exp
(
� min
Q2NW

B

�
H(QrjP ) + 
 bQ(�B) + 
kQsk�) ; (58)

where H(QrjP ) = E
h
dQr

dP log
�
dQr

dP

�i
denotes the relative entropy of Qr with respect to P . The

minimizer QB 2 NW
B is unique only in the regular part QrB. In addition,

sup
H2HW

E
h
�e�
(

R T
0
HtdSt�B)

i
= E[�e�
(fB�B)];

where the optimal claim is

fB = �
1



ln

�
�B



dQrB
dP

�
+B;

where �B = 
 exp(H(QrB jP ) + 
dQB(�B) + 
kQsBk) = � 1

U

W
B , and it satis�es

1. fB 2 L1(Qr), EQr [fB ] � cQs(�B) + kQsk for all Q 2 NW
B (i.e. it belongs to KW

B )

2. EQr
B
[fB ] =dQsB(�B) + kQsBk

Whenever B has some exponential (absolute) moments �nite, bQ(�B) = �Q(B). Also, if both
W and B have all the exponential moments �nite, then NW

B can be replaced by the �classic�set of

probabilities Q 2 M� that have �nite relative entropy, i.e. E[
dQ
dP ln(

dQ
dP )] < +1, and no singular

term appears in (58).

Proof. The conditions on B are exactly those in Theorem 3.15, adapted to the exponential case.

So, directly from Theorem 3.15

sup
H2HW

E
h
�e�
(

R T
0
HtdSt�B)

i
=

min
�>0; Q2NW

B

�
� bQ(�B) + E ��




dQr

dP
log

�
�




dQr

dP

�
� �



dQr

dP

�
+ �kQsk)

�
;

and an explicit minimization over � > 0 leads to the duality formula (58). The remaining assertions

follow as in the proof of Theorem 3.15.

3.6.1 Examples with nonzero singular parts

We now explore the case of an exponential utility to construct two examples where the existence

of a nonzero singular part in the dual optimizer can be asserted explicitly.

Example 3.20. Consider a one period model with S0 = 0 and S1 = Y Z where Y is an exponential

random variable with density f(y) = e�y, y � 0 and Z is a discrete random variable taking the

values f1;� 1
2 ; : : : ;

1
n � 1; : : :g. Assume that Y and Z are independent and let

p1 := P (Z = 1) > 0

pn := P

�
Z =

1

n
� 1
�
> 0; n � 2
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be the probability distribution of Z. For an investor with exponential utility u(x) = �e�x, it
is clear that the random variable W = 1 + Y is suitable and compatible. Suppose now that

B = �(Y; Z), where � is a bounded Borel function, so that the seller of the claim B faces the

problem

sup
h2R

E
�
�e�hS1+B

�
= sup

h2R
E
h
�e�hZY+�(Y;Z)

i
:

Because Y is exponentially distributed with parameter 1, � is bounded, �1 < Z � 1 and

independent from Y , a necessary condition for the expectation above to be �nite is that�1 < h � 1.
Now the function

g(h) = E
�
�e�hS1+B

�
;

has a formal derivative given by

g0(h) = E
�
S1e

�hS1+B
�
= p1E

h
Y e�hY+�(Y;Z)

i
+
X
n�2

pnznE
h
Y e�hznY+�(Y;zn)

i
:

Since �1 < zn < 0 for n � 2, we have that

g0(h) � p1E
�
Y e�Y+B

�
�
X
n�2

pnE
h
Y e�znY+�(Y;zn)

i
:

When pn ! 0 su¢ ciently fast, this expression is not only well de�ned but strictly positive. There-

fore, by adjusting the distribution of Z, we can guarantee that 0 < g0(h) <1 for all �1 < h � 1.
Therefore, the function g(h) is strictly increasing and attains its maximum at h = 1. But this

implies that

sup
h2R

E
�
�e�hS1+B

�
= E

�
�e�S1+B

�
;

so that the optimizer for the primal problem is fB = S1. From the identity

u0(fB �B) = �B
dQrB
dP

;

we obtain that the optimizer for the dual problem has a regular part given by

dQrB
dP

=
e�S1+B

E[e�S1+B ]
: (59)

Using (59) to calculate the expectation of fB with respect to QrB , we conclude from (53) that

QsB(�B) + kQsBk = EQr
B
[fB ] =

E[S1e
�S1+B ]

E[e�S1+B ]
=

g0(1)

E[e�S1+B ]
> 0;

which implies that QsB 6= 0.
Observe that a proper selection of the probabilities pn also guarantees that setting B = 0 in the

expressions above does not alter the domain of the function g(h) and the remaining calculations.

In particular, the maximum of E[�e�hS1 ] would be still attained at h = 1, which implies that the
optimizers f0 and fB for the primal problem with and without the claim coincide. This means

that the investor does not use the underlying market to hedge the claim, despite the fact that

B = �(Y; Z) is explicitly correlated with S1 = Y Z. Such behavior stems from the fact that the

risk associated with the unboundedness of the underlying outweighs the risk associated with the

bounded claim. This should be contrasted with the case of locally bounded markets, where even

a bounded claim leads to a di¤erent optimizer for the primal problem.
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Example 3.21. Consider now the same setting as in the previous example, but with a claim of the

form B = �Y , 0 < � < 1, so that the investor faces the problem

sup
h2R

E
h
�e�(hS1��Y )

i
= sup

h2R
E
h
�e�(hZ��)Y

i
:

A necessary condition for the expectation above to be �nite is �(1 � �) < h � (1 � �), since
�1 < Z � 1. De�ne the function

g(h) = E
�
�e�hS1+�Y

�
;

with derivative

g0(h) = E
�
S1e

�hS1+�Y
�
= p1E

h
Y e�(h��)Y

i
+
X
n�2

pnznE
h
Y e�(hzn��)Y

i
:

As before,

g0(h) � p1E
h
Y e�(1��)Y

i
�
X
n�2

pnE
h
Y e�(zn+�)Y

i
;

which can be made strictly positive for pn ! 0 su¢ ciently fast (as a consequence, we can assume

p1 � pn). Therefore, 0 < g0(h) < 1 for all �(1� �) < h � (1� �) and the function g(h) attains
its maximum at h = 1� �. We then obtain that fB = (1� �)S1, which implies that

dQrB
dP

=
e�(1��)S1+�Y

E[e�(1��)S1+�Y ]
; (60)

in view of the identity

u0(fB �B) = �B
dQrB
dP

:

As before, inserting this in (53)

QsB(�B) + kQsBk = EQr
B
[fB ] =

E[(1� �)S1e�(1��)S1+�Y ]
E[e�(1��)S1+�Y ]

=
g0(1)

E[e�(1��)S1+�Y ]
> 0;

which implies that QsB 6= 0.
Apart from the appearance of a nonzero singular part in the pricing measure, an interesting

feature of this example is the excess hedge fB � f0 = ��S1 induced by the presence of the claim
B. Observe that the selection p1 � pn guarantees that B is positively correlated with S1, since

Cov(B;S1) = �E[Z]Var[Y ];

and E[Z] is positive when p1 is su¢ ciently larger than pn. This would suggest that the seller of

B should hedge it by buying more shares of S. What our analyses indicates is that this intuition

is in fact wrong, since the excess hedge due to the presence of B consists of selling � shares of S.

The explanation for this counterintuitive result relies on the fact that B is not perfectly correlated

with S. In fact, whenever Z < 0, the risks of large downward moves in S1 = Y Z and large upward

moves in B = �Y are both related to the same exponential random variable Y . Therefore, in the

presence of B, the preference structure prohibits to buy more than 1 � � shares, which must be
then the new optimum.
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4 The indi¤erence price �

4.1 De�nition and domain of �

Consider an agent with utility u (not necessarily satisfying Assumption (A)), initial endowment x

and investment possibilities given by HW who seeks to sell a claim B. As pointed out in Section

1, the indi¤erence price �(B) for this claim is de�ned as the implicit solution to (1). In view of

the duality result of Theorem 3.15, we now rephrase this de�nition in terms of the function

UWB (x) := sup
k2KW

E[u(x+ k �B)]: (61)

Comparing this with (50), we see that the optimal value UWB (0) is exactly what has been there

denoted by UWB . Notice that we could alternatively denote (61) by U
W
B�x, which would be consistent

with (50) for a claim of the form (B � x). We prefer UWB (x) instead, since it better illustrates the
di¤erent �nancial roles played by the initial endowment x and the claim B.

De�nition 4.1. Provided that the related maximization problems are well�posed, the seller�s

indi¤erence price �(B) of the claim B is the implicit solution of the equation

UW0 (x) = U
W
B (x+ �(B)) (62)

that is, �(B) is the additional initial money that makes the optimal utility with the liability B

equal to the optimal utility without B.

The next lemma shows that the class

B = Au \ Lbu = fB 2 Lbu j E[bu((1 + �)B+)] < +1 for some � > 0g (63)

of claims B; for which we compute indi¤erence prices, is considerably large and has desirable

properties. Note that the equivalence (14) says that E[bu((1 + �)B+)] < +1 if and only if B

satis�es (26), so that (28) and (63) agree. In other words, B consists of the set of claims which, in
addition to satisfying the hypotheses of Theorem 3.15, are also in Lbu. Upon �xing the loss variable
W , the strengthening assumption B 2 Lbu allows us to use Corollary 3.16 and guarantees that the
set of dual functionals NW

B does not depend on B and reduces to the set NW de�ned in (48).

Lemma 4.2.

B = fB 2 Lbu j (�B) 2 int(Dom(Iu))] (64)

and therefore has the properties:

1. B is convex and open in Lbu;
2. If B1 2 B and B2 � B1, then B2 2 B.

3. B contains M bu (and thus L1);
4. for any given B 2 B and C 2M bu, we have that B +C 2 B. In particular, B + c 2 B for all
constants c 2 R.
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Proof. As remarked after (26), we already know that B satis�es (26) i¤ �B+ 2 int(Dom(Iu)).
Under the extra condition B 2 Lbu, B satis�es (26) i¤ �B 2 int(Dom(Iu)), which shows (64).
Then, B is obviously open and convex (property 1) and property 2 is a consequence of the

monotonicity of Iu. It is evident that M bu is contained in B, since C 2M bu i¤ E[bu(kC)] < +1 for

all k > 0 (property 3). In order to prove property 4, �x B 2 B and a convenient �. For any C in

M bu, set r = �
2

(1+�)(1+ �
2 )
. Then

E
hbu�(1 + �

2
)(B + C)+

�i
�
1 + �

2

1 + �
E
�bu((1 + �)B+)�+ �=2

1 + �
E

�bu�C+
r

��
< +1:

4.2 The properties of �

The next Proposition lists the various properties of the indi¤erence price functional �, de�ned on

the set B � Lbu. Some results are new, in particular the regularity of the map and the description
of the conjugate �� and of the subdi¤erential @�. They are nice consequences of the choice of the

natural Orlicz framework and the proofs are quite short and easy. The other items are extensions

of well�established results to the present general setup (see e.g. [Be03] or the recent [OZ07, Prop.

7.5] and the references therein). A recent reference book for the necessary notions from Convex

Analysis is [BZ05].

In the next proposition, the assumption that UW0 (x) < u(+1) can be replaced by NW 6= ;;
whenever the utility function satis�es assumption (A). Indeed, in this case Proposition 3.11 and

NW 6= ; guarantees that UW0 (x) < u(+1) for all x 2 R.

Proposition 4.3. Fix a loss variable W and an initial wealth x 2 R such that UW0 (x) < u(+1).
The seller�s indi¤erence price

� : B ! R

veri�es the following properties:

1. � is well�de�ned. The solution to the equation (62) above exists and it is unique.

2. Convexity and monotonicity. � is a convex, monotone non�decreasing functional.

3. Translation invariance. Given B 2 B, �(B + c) = �(B) + c for any c 2 R.

4. Regularity. � is norm continuous and subdi¤erentiable.

5. Dual representation. � admits the representation

�(B) = max
Q2NW

(Q(B)� �(Q)) (65)

where the (minimal) penalty term �(Q) is given by

�(Q) = x+ kQsk+ inf
�>0

(
E[�(�dQ

r

dP )]� U
W
0 (x)

�

)
:

As a consequence, the subdi¤erential @�(B) of � at B is given by

@�(B) = QWB (x+ �(B)) (66)
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where QWB (x+ �(B)) is the set of minimizers of the dual problem associated with the right�

hand side of (62).

6. Bounds. � satis�es the bounds

max
Q2QW

0 (x)
Q(B) � �(B) � sup

Q2NW

Q(B)

If W 2M bu and B 2M bu, the bounds above simplify to
EQ� [B] � �(B) � sup

Q2M�\L�
EQ[B]

where the probability Q� 2M� \ L� is the unique dual minimizer in QW0 (x).

7. Volume asymptotics. For any B 2 B we have

lim
b#0

�(bB)

b
= max

Q2QW
0 (x)

Q(B): (67)

If B is in M bu,

lim
b!+1

�(bB)

b
= sup

Q2NW

Q(B): (68)

If W 2M bu and B 2M bu, the two volume asymptotics above become
lim
b#0

�(bB)

b
= EQ� [B]; lim

b!+1

�(bB)

b
= sup

Q2M�\L�
EQ[B]

where the probability Q� 2M� \ L� is the unique dual minimizer in QW0 (x).

8. Price of replicable claims. If B 2 B is replicable in the sense that B = c +
R T
0
HtdSt

with H 2 HW , but also �H 2 HW , then �(B) = c.

Proof. Applying Theorem 2.7, eq. (22), we preliminary observe that the assumption UW0 (x) <

u(+1) implies NW 6= ?.

1. Let F (p) := UWB (x+p): By standard arguments it can be shown that F : R! (�1; u(+1)]
is concave and monotone non�decreasing, though not necessarily strictly increasing. By

monotone convergence we also have

lim
p!+1

F (p) = u(+1): (69)

We now show that limp!�1 F (p) = �1; so that F (p) is not constantly equal to u(+1).
Fix Q 2 NW and take � > 0 for which E[�(�dQ

r

dP )] is �nite. From the inclusion KW � KW
B ;

proved in Lemma 3.14, and Fenchel inequality it follows, as in the second part of Lemma

3.14, that for all k 2 KW

E[u(x+ p+ k �B)] � E

�
(x+ p+ k �B)�dQ

r

dP

�
+ E

�
�

�
�
dQr

dP

��
� �(x+ p�Q(B) + kQsk) + E

�
�

�
�
dQr

dP

��
< +1;
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so that the r.h.s. does not depend on k anymore. Taking the sup over k

F (p) = UWB (x+ p) � �(x+ p�Q(B) + kQsk) + E
�
�

�
�
dQr

dP

��
and then, passing to the limit for p ! �1, one obtains limp!�1 F (p) = �1. The well-
posedness of the de�nition of � is now straightforward. In fact, let pL be the in�mum of the

set fp 2 R j F (p) = F (+1) = u(+1)g. From concavity, on (�1; pL) F is continuous and

strictly monotone and thus a bijection onto the image (�1; u(+1)). Since UW0 (x) < u(+1),
there always exists a unique p such that F (p) = UW0 (x), namely the indi¤erence price �(B).

2. Convexity and monotonicity are consequences of the de�nition (62), of the concavity and

monotonicity of u and of the convexity of HW .

3. Translation invariance follows directly from the de�nition (62).

4. For this item, observe that � is a real valued, convex, monotone functional on the convex

open subset B of the Banach lattice Lbu. It then follows from item 2 of Lemma 4.2 that the

extension e� of � on Lbu with the value +1 on LbunB is still monotone, convex and translation
invariant. Trivially, the interior of the proper domain of e� coincides with B. Therefore,
norm continuity and sub-di¤erentiability of e� (and thus of �) on B follow from an extension

of the classic Namioka-Klee theorem for convex monotone functionals (see [RS06], but also

[BF07] and [CL07] in the context of Risk Measures). As a consequence, � admits a dual

representation on B as

�(B) = e�(B) = max
Q2(Lbu)�+;Q(1
)=1

fQ(B)� ��(Q)g (70)

where �� is the convex conjugate of e�, that is �� : (Lbu)� ! (�1;+1],

��(z) = sup
B02Lbufz(B

0)� e�(B0)g = sup
B2B

fz(B)� �(B)g:

The normalization condition Q(1
) = 1 in (70) derives from the translation invariance prop-

erty. The subdi¤erential of � at B is, as always, given by

@�(B) = argmaxfQ(B)� ��(Q)g: (71)

Note that, since �(0) = 0; �� is nonnegative and thus it can be interpreted as a penalty

function. The next item presents a characterization of �� and therefore of @�(B).

5. A dual representation for � has just been obtained in (70). The current item is proved in

two steps: �rst, we establish representation (65) with the penalty �; second, we prove that

� = ��, that is � is the minimal penalty function, which together with (71) gives (66) and

completes the proof.

Step 1. From the de�nition of �(B) and from the dual formula (50)

UW0 (x) = UWB (x+ �(B))

= min
�>0;Q2NW

�
�Q(�B + x+ �(B)) + �kQsk+ E

�
�

�
�
dQr

dP

���
:
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Necessarily then

�(B) � Q(B)�
"
x+ kQsk+

E[�(�dQ
r

dP )]� U
W
0 (x)

�

#
for all � > 0; Q 2 NW

and equality holds for the optimal �� and any Q� 2 QWB (x + �(B)). Fixing Q 2 NW and

taking �rst the supremum over � > 0, we get

�(B) � Q(B)� inf
�>0

"
x+ kQsk+

E[�(�dQ
r

dP )]� U
W
0 (x)

�

#
:

Taking then the supremum over Q we �nally obtain

�(B) = max
Q2NW

(
Q(B)� inf

�>0

"
x+ kQsk+

E[�(�dQ
r

dP )]� U
W
0 (x)

�

#)

where equality holds for ��; Q� 2 QWB (x+ �(B)). Observe that the following extension, still
denoted by �,

�(Q) =

8<: inf�>0

�
x+ kQsk+ E[�(� dQ

r

dP )]�UW
0 (x)

�

�
when Q 2 NW

+1 otherwise

is [0;+1]-valued and satis�es infQ2(Lbu)� �(Q) = 0. Therefore, it is a grounded penalty

function and clearly

�(B) = max
Q2(Lbu)�+

fQ(B)� �(Q)g

and the set

argmax fQ(B)� �(Q)g coincides with QWB (x+ �(B)): (72)

In particular, when B = 0

�(0) = 0 and argmax f��(Q)g = argmin f�(Q)g = QW0 (x): (73)

Step 2. As � provides another penalty function, a basic result in convex duality ensures that

�� = ���, i.e. �� is the convex, �((Lbu)�; Lbu)�lower semicontinuous hull of �. We want to
show that �� = �. To this end, we prove that � is already convex and lower semicontinuous.

(a) � is convex: Let Q(y) = yQ1 + (1 � y)Q2 be the convex combination of any couple
of elements in NW (if the Qi are not in NW there is nothing to prove). Given any

�1; �2 > 0 , de�ne �(y) = 1
(1�y) 1

�2
+y 1

�1

, so that 1
�(y) = (1� y)

1
�2
+ y 1

�1
. Then

�(Q(y)) �
�
x+ kQs(y)k+ E[�(�(y)

dQr(y)
dP )]�UW

0 (x)

�(y)

�
�

y

�
x+ kQs1k+

E[�(�1
dQr1
dP )]�UW

0 (x)

�1

�
+ (1� y)

�
x+ kQs2k+

E[�(�2
dQr2
dP )]�UW

0 (x)

�2

�
where the inequalities follow from the convexity of the norm and of the function (z; k)!
z�(k=z) on R+ � R+, as already pointed out. Taking the in�mum over �1 and �2

�(Q(y)) � y �(Q1) + (1� y)�(Q2):
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(b) � is lower semicontinuous: Since � is a convex map on a Banach space, weak lower

semicontinuity is equivalent to norm lower semicontinuity. Suppose then that Qk is a

sequence converging to Q with respect to the Orlicz norm. We must prove that

�(Q) � lim inf
k

�(Qk) := L

We can assume L = lim infk �(Qk) < +1, otherwise there is nothing to prove. Now, it
is not di¢ cult to see that

Qk
k�k! Q i¤ Qrk

k�k! Qr; Qsk
k�k! Qs (74)

so that Qrk ! Qr in Lb� and henceforth in L1. We can extract a subsequence, still
denoted by Qk to simplify notation, such that

�(Qk)! L and Qrk ! Qr a:s:

So these Qk are (de�nitely) in NW , which is closed and therefore the limit Q 2 NW .

For all k 2 N+ there exists �k > 0 such that

�(Qk) � x+ kQskk+
E[�(�k

dQr
k

dP )]� U
W
0 (x)

�k
� �(Qk) +

1

k
:

The next arguments rely on a couple of applications of Fatou Lemma to (a subsequence

of) the sequence
�
�(�k

dQrk
dP )�UW

0 (x)

�k

�
k

. Fatou Lemma is enabled here by the condition

UW0 (x) < u(+1) and by the convergence of the regular parts (
dQr

k

dP )k. In fact, one can

always �nd an ex such that u(ex) = UW0 (x) and then the Fenchel inequality gives the

required control from below

�(�k
dQr

k

dP )� U
W
0 (x)

�k
+
dQrk
dP

ex � 0: (75)

The sequence (�k)k cannot tend to +1. In fact, if �k ! +1, then a.s. we would have
(remember that � is bounded below)

lim inf
k

�
�
�k

dQr
k

dP

�
� UW0 (x)

�k
= lim inf

k

�
�
�k

dQr
k

dP

�
�k

� lim
k

(miny �(y))

�k
1
f
dQr

k
dP ^ dQr

dP =0g
+ lim

k

�(�k
dQr

k

dP )

�k
1
f
dQr

k
dP ^ dQr

dP >0g

= lim
k

�(�k
dQr

k

dP )

�k
dQr

k

dP

dQrk
dP

1
f
dQr

k
dP >0g

1f dQrdP >0g (76)

Since 1
f
dQr

k
dP >0g

1f dQrdP >0g ! 1f dQrdP >0g a.s. and, as already checked, limy!+1
�(y)
y = +1

the limit in (76) is in fact +1 on the set fdQ
r

dP > 0g which has positive probability as
Q 2 NW . But then

L = limkf�(Qk) + 1
kg = limk

�
x+ kQskk+ E

�
�(�k

dQrk
dP )�UW

0 (x)

�k

��
� x+ kQsk+ E

�
lim infk

�(�k
dQrk
dP )�UW

0 (x)

�k

�
= +1
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where in the inequality we apply (74) and Fatou�s Lemma.

Therefore there exists some compact subset of R+ that contains �k for in�nitely many
k�s, so that we can extract a subsequence �kn ! ��. The inequality (75) ensures that

�� must be strictly positive. Otherwise, if �� = 0, the numerator of the fraction there

tends to �(0)� UW0 (x) = u(+1)� UW0 (x) > 0 and globally the limit random variable

would be +1. Finally,

�(Q) � x+ kQsk+
E[�(�� dQ

r

dP )]� U
W
0 (x)

��

� x+ lim inf
n

(
kQsknk+

E[�(�kn
dQr

kn

dP )]� UW0 (x)
�kn

)
= L:

Therefore, � = �� and the identity @�(B) = QWB (x + �(B)) in (66) follows from (71) and

(72).

6. The bounds below are easily proved,

sup
Q2QW

0 (x)

Q(B) � �(B) � sup
Q2 NW

Q(B) (77)

since the �rst inequality follows from the fact that when Q 2 QW0 (x), the penalty �(Q) = 0
(see (73)) and the second inequality holds because � is a penalty, i.e. �(Q) � 0. The �rst

supremum is in fact a maximum, which is a consequence of the�Max Formula" as better

explained in item 7 below.

The case W;B 2M bu is immediate from (77) and from the special form of the dual as stated

in Corollary 3.16.

7. Let �0(C;B) indicate the directional derivative of � at C along the direction B, i.e. �0(C;B) =

limb#0
�(C+bB)��(C)

b . The so�called Max Formula ([BZ05, Theorem 4.2.7]) states that given

a convex function � and a continuity point C, then

�0(C;B) = max
Q2@�(C)

Q(B)

So the �rst volume asymptotic becomes a trivial application of the Max Formula with C = 0,

since bB 2 B if b � 1 + � and

lim
b#0

�(bB)

b
= �0(0; B) = max

Q2QW
0 (x)

Q(B);

because �(0) = 0 and QW0 (x) = @�(0).
For the second volume asymptotic, when B 2 M bu then bB 2 B for all b 2 R. So, �(bB) is
well�de�ned and for all b > 0 we have that �(bB) � supQ2NW Q(bB). Therefore

lim sup
b!+1

�(bB)

b
� sup

Q2NW

Q(B):

If we �x Q 2 NW , the penalty �(Q) is �nite and

�(bB)

b
� Q(B)� �(Q)

b
for all b > 0
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so that

lim inf
b!+1

�(bB)

b
� Q(B) for all Q 2 NW

so that

lim
b!+1

�(bB)

b
= sup

Q2NW

Q(B):

Finally, the case W;B 2M bu follows from the asymptotics just proved and Corollary 3.16.

8. If B and �B are replicable with admissible strategies, then Q(B) = c for all Q 2 NW ,

whence in particular for the �zero penalty functionals" Q 2 QW0 (x). Therefore �(B) =
maxQfQ(B)� �(Q)g = c

Remark 4.4. As already noted in [Be03, Remark 2.6], if B is not in B (e.g. a call option in a
Black-Scholes model for an investor with exponential preferences) but satis�es

B = B� +

Z T

0

H�
s dSs

where B� 2 B and the strategy H� is such that fH +H� j H 2 HW g = HW , then one can apply

the analysis to B� and de�ne �(B) = �(B�).

To better compare our results with the current literature, in the next Corollary we specify the

formula for � in the exponential utility case.

Corollary 4.5. Let u(x) = �e�
x, �x a loss variable W and assume that NW 6= ;. If B 2 B
then:

�
(B) = max
Q2NW

�
Q(B)� 1



H(Q;P )

�
; (78)

where the penalty term is given by:

H(Q;P ) := 
kQsk+H(QrjP )� UW0
= 
kQsk+H(QrjP )� min

Q2NW
fH(QrjP ) + 
kQskg : (79)

Observe that, apart from the presence of the singular term kQsk, this result coincides with
equation (5.6) of [6Au02]. For a possible interpretation of this term, both in (79) and in the

general representation (65) let us de�ne a catastrophic event as a random variable � such that

E[u(�)] > �1 but E[u(��)] = �1 for some � > 0: (80)

In other words, catastrophic events are given by random variables in the set

bD := ff 2 LbunM bu and E[u(f)] > �1g: (81)

Since Qs vanishes on M bu, we conclude that
kQsk = sup

f2D
Qs(�f) = sup

f2 bDQ
s(�f); (82)

so that the singular component is only relevant when computing Q(f) for a catastrophic f 2 bD.
Therefore, if Q 2 MW is a �pricing measure" for which kQsk > 0, then it might happen that
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EQr [f ] > 0 for a catastrophic random variable in the domain of optimization, despite the fact

that Q(f) � 0 for all f 2 CW . Such Q should then be used with caution. When pricing the

claim B using the formula (78) or (65), the pricing measures Q 2 MW that allow this unnatural

behavior are penalized with a penalization proportional to the relevance that Qs attributes to the

catastrophic events according to (82).

We conclude this section with some considerations on the risk measure induced by �.

Corollary 4.6. Under the same hypotheses of Proposition 4.3 , the seller�s indi¤erence price �

de�nes a convex risk measure on B, with the following representation:

�(B) = �(�B) = max
Q2NW

fQ(�B)� �(Q)g: (83)

If both the loss controlW and the claim B are inM bu, then this risk measure has the Fatou property.
In terms of �, this means

Bn " B ) �(Bn) " �(B) (84)

Proof. The �rst part is a consequence of the above Proposition and the second part follows from the

fact that we have often stressed that when W;B are in M bu there is a version of the dual problem
only with regular elements Q 2 NW \ L1 = M� \ L�. Consequently there is a representation
�(B) = maxQ2NW\L1fQ(�B) � �(Q)g on the order continuous dual. But this implies the Fatou
property (see e.g. [BF07, Prop. 26]).

5 Comparison with existing literature

The results above extend the literature on utility maximization with random endowment when u

is �nite on the entire real line. In fact, we allow the semimartingale S to be non locally bounded

and as far as we know ours is the �rst paper in this direction.

Also, the conditions we put on the claim B, that is B 2 Au; are extremely weak - for the
exponential utility B 2 Au simply means that B satis�es (26). The following list compares our

conditions on B with those in the cited papers, which are all formulated in the S locally bounded

case.

To better compare these works, we stress that when S is locally bounded, we may select W = 1

and therefore (see Corollary 3.16) the dual problem can be formulated totally free of singular parts,

as soon as B 2 M bu, and we also get the representation of the optimal fB as terminal value of an
S-stochastic integral (Proposition 3.18).

1. The �rst paper where a duality result of the type (2)-(3) appeared - obviously with no

singular components - is Bellini and Frittelli [BeF02] Corollaries 2.2, 2.3, 2.4. In this paper, u is

�nite on the entire real line, B is bounded, W = 1, so that the admissible set of trading strategies

is H1 andM1 is the set of local martingale measures.

2. The six Authors paper [6Au02] (see also the related work by Kabanov and Stricker [KS02])

considers only the exponential u. They extended the results [BeF02] in two respect. First they con-

sider four di¤erent classes of trading strategies (including H1) and secondly, they assume condition

(26) plus B bounded from below. These conditions clearly imply that B 2 B = Lbu \ Au.
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3. Becherer�s paper [Be03] also consider only the exponential case and extend further the results

in 1) and 2) above. His Assumption 2.4

E[e(
+")B ] < +1; E[e�"B ] < +1

is however equivalent to saying that conditions (26) and (27) hold, i.e. that B 2 B = Lbu \ Au.
4. For general utility u �nite on R, the Assumption 1.6 on B in Owen and Zitkovich [OZ07] is

on a di¤erent level, since it is a joint condition on B and the admissible strategies. This condition

is not easy to verify in practice, since it requires the prior knowledge of the dual measures. Also,

for economic reasons, we believe that it is better to state the conditions on the claim only in terms

of the compatibility with the utility function.
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