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Abstract

The demand of reliable statistics for small areas, when only reduced sizes of the sam-
ples are available, has promoted the development of small area estimation methods.
In particular, an approach that is now widely used is based on linear mixed models.
Chambers & Tzavidis (2006) have recently proposed an approach for small area es-
timation that is based on M-quantile models. However, when the functional form of
the relationship between the qth quantile and the covariates is not linear, it can lead
to biased estimators of the small area parameters. In this paper a small area mean
estimator and its mean squared error estimator are proposed allowing non linearities
in the relationship between the quantiles of the distribution of the study variable and
the auxiliary covariates by using a nonparametric specification of the conditional M-
quantile of the response variable given the covariates (Pratesi et al., 2006). Simulation
studies are presented that show the finite sample properties of the proposed estimation
technique.

Keywords: Simulation study; Robust regression; Smoothing.

1 Introduction

Sample survey data are extensively used to provide reliable direct estimates of totals and
means for the whole population and large areas or domains. Also estimation of population
characteristics for sub-national domains (or smaller regions) is an important objective for
statistical surveys. However, sample sizes may not be large enough within the domains/areas
of interest to support direct estimates of adequate precision. The demand of reliable statistics
for small areas, when only reduced sizes of the samples are available, has promoted the de-
velopment of small area estimation methods: in particular, the model-based approach is now
widely used. It is based on linear mixed models that include random area effects to account
for between area variations. Under this class of models the Best Linear Unbiased Predictor
(BLUP) is obtained. Details about this predictor, and its empirical version (EBLUP) for
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small area parameters are in Rao (2003). However, linear mixed models depend on strong
distributional assumptions, require a formal specification of the random part of the model
and do not easily allow for outlier robust inference.

Chambers & Tzavidis (2006) have recently proposed an approach for small area estima-
tion that is based on M-quantile models. M-quantile regression provides a “quantile-like”
generalization of regression based on influence functions. M-quantile small area models do
not depend on strong distributional assumptions nor on a predefined hierarchical structure,
and outlier robust inference is automatically performed when these models are fitted. How-
ever, M-quantile regression assumes that the quantiles of the distribution are some known
parametric function of the covariates. When the functional form of the relationship between
the qth quantile and the covariates deviates from the assumed one, the traditional M-quantile
regression can lead to biased estimators of the small area parameters. Pratesi et al. (2006)
extended M-quantile regression to nonparametric modeling via penalized splines. Penalized
splines (p-splines in the proceeding of the paper) regression is a flexible smoothing technique
popularized by Eilers & Marx (1996). Ruppert et al. (2003) provide a thorough treatment of
p-splines and their applications. Bollaerts et al. (2006) introduce quantile regression based
on p-splines to estimate quantile growth curves and quantile antibody levels as a function of
age. Lee & Oh (2007), independently of Pratesi et al. (2006), use M-regression to make p-
splines robust against outliers. Using p-splines for M-quantile regression, beyond having the
properties of M-quantile models, allows for dealing with an undefined functional relationship
that can be estimated from the data. When the relationship between the qth quantile and
the covariates is not linear, a p-splines M-quantile regression model may have significant
advantages compared to the linear M-quantile model.

In this paper a small area mean estimator and its mean squared error estimator are
proposed allowing non linearities in the relationship between the quantiles of the distribution
of the study variable and the auxiliary covariates. The nonparametric specification of the
conditional M-quantile of y given x is described in Pratesi et al. (2006), and an application
of the semiparametric version of the model is in Pratesi et al. (2008); here, in Section 2, we
summarize the main steps of the method. In Section 3 the small area mean estimator and its
mean squared error estimator are shown. In Section 4 a simulation study illustrates the finite-
sample performance of the small area estimator based on p-splines M-quantile regression in
comparison with linear M-quantile small area estimator and Empirical Best Linear Unbiased
Prediction estimators based on Battese et al. (1988) model and on nonparametric regression
model (Opsomer et al., 2008). Some final remarks are drawn in Section 5.

2 Nonparametric M-quantile regression

Given an influence function ψ, a nonparametric model with one covariate x1 for the qth

quantile can be written as Qq(x1, ψ) = m̃ψ,q(x1), where the function m̃ψ,q(·) is unknown, but
assumed to be approximated sufficiently well by the following function

mψ,q[x1;βψ(q),γψ(q)] = β0ψ(q) + β1ψ(q)x1 + . . .+ βpψ(q)xp1 +
K∑
k=1

γkψ(q)(x1 − κk)p+, (1)
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where p is the degree of the spline, (t)p+ = tp if t > 0 and 0 otherwise, κk for k = 1, . . . , K
is a set of fixed knots, βψ(q) = (β0ψ(q), β1ψ(q), . . . , βpψ(q))T is the coefficient vector of the
parametric portion of the model and γψ(q) = (γ1ψ(q), . . . , γKψ(q))T is the coefficient vector
for the spline one. The latter portion of the model allows for handling nonlinearities in the
structure of the relationship. If the number of knots K is sufficiently large, the class of
functions in (1) is very large and can approximate most smooth functions. In particular, in
the p-splines context, a knot is placed every 4 or 5 observations at uniformly spread quantiles
of the unique values of x1. The spline model (1) uses a truncated polynomial spline basis to
approximate the function m̃ψ,q(·). Other bases can be used; in particular we will later use
radial basis functions to handle bivariate smoothing. More details on bases and knots choice
can be found in Ruppert et al. (2003, Chapters 3 and 5).

The influence of the knots is limited by putting a constraint on the size of the spline coeffi-
cients: typically

∑K
k=1 γ

2
kψ(q) is bounded by some constant, while the parametric coefficients

βψ(q) are left unconstrained. Therefore, estimation can be accommodated by mimicking
penalization of an objective function and solving the following set of estimating equations

n∑
i=1

ψq(yi − xiβψ(q)− ziγψ(q))(xi, zi)
T + λ

[
0(1+p)

γψ(q)

]
= 0(1+p+K), (2)

where xi here is the i-th row of the n× (1 + p) matrix

X =

 1 x11 · · · xp11
...

...
. . .

...
1 x1n · · · xp1n

 ,
while zi is the i-th row of the n×K matrix

Z =

 (x11 − κ1)
p
+ · · · (x11 − κK)p+

...
. . .

...
(x1n − κ1)

p
+ · · · (x1n − κK)p+

 ,
and λ is a Lagrange multiplier that controls the level of smoothness of the resulting fit.

An algorithm based on iteratively reweighted penalized least squares is proposed in
Pratesi et al. (2006) to effectively compute the parameter estimates. Once those estimates are
obtained, m̂ψ,q[x1] = mψ,q[x1; β̂ψ(q), γ̂ψ(q)] can be computed as an estimate for Qq(x1, ψ).
The approximation ability of this final estimate will heavily depend on the value of the
smoothing parameter λ. Generalized Cross Validation (GCV) has been usefully applied in
the context of smoothing splines (Craven & Wahba, 1979) and is used also in Pratesi et al.
(2006) too.

Extension to bivariate smoothing can be handled by assumingQq(x1, x2, ψ) = m̃ψ,q(x1, x2).
This is of central interest in a number of application areas as environment and public health.
It has particular relevance when referenced responses need to be converted to maps. In
particular, the following model is assumed at quantile q for unit i:

mψ,q[x1i, x2i;βψ(q),γψ(q)] = β0ψ(q) + β1ψ(q)x1i + β2ψ(q)x2i + ziγψ(q). (3)
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Here zi is the i-th row of the following n×K matrix

Z = [C(x̃i − κk)] 16i6n
16k6K

[C(κk − κk′)]
−1/2
16k,k′6K , (4)

where C(t) = ||t||2 log ||t||, x̃i = (x1i, x2i) and κk, k = 1, . . . , K are knots. See Pratesi et al.
(2006) and for details on this. Here, it is enough to note that the estimation procedure can
again be pursued with (2) where xi = (1, x̃i).

It should be noted, then, that the estimating equations in (2) can be used to handle
univariate smoothing and bivariate smoothing by suitably changing the parametric and the
spline part of the model, i.e. once the X and the Z matrices are set up. Finally, other
continuous or categorical variables can be easily inserted parametrically in the model by
adding columns to the X matrix. This allows for semiparametric modeling, as intended in
Ruppert et al. (2003), to be inherited and applied to M-quantile regression.

3 The methodology

P-splines M-quantile regression is applied to the estimation of a small area mean as follows.
The first step is to estimate the M-quantile coefficients qi for each unit i in the probabilistic
sample s of size n without reference to the m small areas of interest. This is done defining
a fine grid of values on the interval (0, 1) and using the sample data to fit the p-splines M-
quantile regression functions at each value q on this grid, as explained in the previous section.
If a data point lies exactly on the qth fitted curve, then the coefficient of the corresponding
sample unit is equal to q. Otherwise, to obtain qi, a linear interpolation over the grid is used.

If a hierarchical structure does explain part of the variability in the population data,
we expect units within clusters defined by this hierarchy to have similar M-quantile coef-
ficients. Therefore, an estimate of the mean quantile for area j, q̄j, is obtained by taking
the corresponding average value of the sample M-quantile coefficient of each unit in area j,
ˆ̄qj =

∑nj
i=1 qi. The small area estimator of the mean ȳj is then

ˆ̄yj =
1

Nj

{∑
i∈sj

yij +
∑
i∈rj

ŷij

}
, (5)

where sj and rj denote the sampled and non sampled units in area j, respectively, with
Uj = sj ∪ rj, and Nj is the known population size of area j. Note that the unobserved value
for population unit i ∈ rj is predicted using

ŷij = xijβ̂ψ(ˆ̄qj) + zijγ̂ψ(ˆ̄qj),

where β̂ψ(ˆ̄qj) and γ̂ψ(ˆ̄qj) are the coefficient vectors of the parametric and spline portion,
respectively, of the fitted p-splines M-quantile regression function at ˆ̄qj.

The estimator of the small area mean can be biased for small areas containing outliers.
This has already been noted in Tzavidis & Chambers (2006) for the estimator under the
a linear M-quantile regression model. They propose an adjustment for bias based on the
Chambers & Dunstan (1986) estimator of the small area distribution function. This adjust-
ment can be used also in case of p-splines M-quantile regression models. The bias-adjusted
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estimator for the mean is given by

ˆ̄yj =
1

Nj

{∑
i∈sj

yij +
∑
i∈rj

ŷij +
Nj − nj
nj

∑
i∈sj

(yij − ŷij)
}
, (6)

where ŷij denotes the predicted values for the population units in sj and in rj. This estimator
will be here denoted with PSPL when using a p-splines M-quantile regression model, and
with LIN when using a linear one.

In many instances we are interested in estimating parameters for out of sample areas,
that is areas where there are not sampled units even if in those areas there are population
units with the characteristic of interest. In this case no area effects can be computed and the
small area characteristic is estimated by using synthetic estimation. We can note that with
synthetic estimation all variation in the area-specific predictions comes from the area-specific
auxiliary information. One approach to improving estimation for out of sample areas is by
borrowing strength over space (Saei & Chambers, 2005). In case of P-splines M-quantile
regression, this can be achieved using model (3) and setting ˆ̄qj = 0.5. A synthetic type mean
predictor for out of sample area j is given by

ˆ̄yj =
1

Nj

{∑
i∈rj

xijβ̂ψ(0.5) + zijγ̂ψ(0.5)
}
. (7)

We expect that when a truly spatially process is present, (7) will improve the efficiency of
the other traditional synthetic estimators.

Following the approach described in Chandra & Chambers (2005) and Chambers & Tza-
vidis (2006), for fixed q and λ, the ˆ̄yj in (6) can be written as the following linear combination
of the observed yi,

ˆ̄yj =
1

Nj

∑
i∈s

wijyi, (8)

where the n-vector of weights wj = (w1j, . . . , wnj)
T is given by

wj =
Nj

nj
1sj +W (ˆ̄qj)[X Z]

(
[X Z]TW (ˆ̄qj)[X Z] + λG

)−1
(
T rj −

Nj − nj
nj

T sj

)
(9)

with 1sj the n-vector with ith component equal to one whenever the corresponding sample
unit is in area j and to zero otherwise, W (ˆ̄qj) a diagonal n×n matrix that contains the final
set of weights produced by the iteratively reweighted penalized least squares algorithm used
to estimate the regression coefficients, G = diag{0P ,1K} with P the number of columns of
X and K the number of columns of Z, and with T rj and T sj the totals of the covariates
for the non-sampled and the sampled units in area j, respectively.

The weights derived from (9) are treated as fixed and a ’plug in’ estimator of the mean
squared error of estimator (8) given by

MSE(ˆ̄yj) = var(ˆ̄yj − ȳj) + [bias(ˆ̄yj)]
2 (10)

can be proposed by using standard methods for robust estimation of the variance of unbiased
weighted linear estimators (Royall & Cumberland, 1978) and by following the results due to
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Tzavidis & Chambers (2007). The prediction variance of (8) can be approximated by

var(ˆ̄yj − ȳj) ≈
1

N2
j

(∑
i∈sj

{
d2
ij +

Nj − nj
nj − 1

}
var(yij) +

∑
i∈s\sj

d2
ijvar(yij)

)
(11)

with dij = wij−1 if i ∈ sj and dij = wij otherwise, and s\sj the set of sampled units outside
area j. The bias can be written as

bias(ˆ̄yj) ≈
1

Nj

( m∑
k=1

∑
i∈sk

wij ỹik −
∑
i∈Uj

ỹij

)
(12)

where ỹik = xikβψ(ˆ̄qk)+zikγψ(ˆ̄qk) are the study variable values under the p-splines M-quantile
regression model. Following the area level residual approach (Tzavidis & Chambers, 2006),
we can interpret var(yij) conditionally to the specific area j from which yi is drawn and
hence replace var(yij) in (11) by (yij − ŷij)2. An estimate of the bias is obtained replacing
ỹik by ŷik in (12). A robust estimator of the mean squared error of (8) is given by the sum
of the estimator of the variance

v̂ar(ˆ̄yj) =
1

N2
j

∑
i∈sj

{
d2
ij +

Nj − nj
nj − 1

}
(yij − ŷij)2 +

∑
i∈s\sj

d2
ij(yij − ŷij)2

 (13)

and the squared estimate of the bias

b̂2(ˆ̄yj) =
1

N2
j

 m∑
k=1

∑
i∈sk

wij ŷik −
∑
i∈Uj

ŷij

2

. (14)

Since the bias-adjusted nonparametric M-quantile estimator is an approximately unbiased
estimator of the small area mean, the squared bias term will not impact significantly the
mean squared error estimator. The main limitation of the MSE estimator is that it does not
account for the variability introduced in estimating the area specific q’s and λ. We note also
that we can obtain an estimate only for areas where there are at least two sampled units.
For all these reasons, we are currently investigating the use of bootstrap as an alternative
approach for estimating the MSE.

4 Simulation study

In this section we use simulation studies to illustrate the finite-sample performance of the
small area mean estimator based on p-splines M-quantile regression (6) – PSPL. It is com-
pared with the estimator computed by standard linear M-quantile regression – LIN – and
with the Empirical Best Linear Unbiased Prediction estimators based on Battese et al. (1988)
model – EBLUP – and on nonparametric regression model (Opsomer et al., 2008) – NPE-
BLUP. The properties of the estimators have been assessed by Monte Carlo experiments
using models with a single covariate.

Given the number of small areas m = 30, three synthetic populations of size N =
10, 550 are generated using the following models for creating the true underlying relationship
between the covariate x and the expected value of the response variable y E(y|x) = m(x):
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Linear. m(x) = 3 + 2(x− 0.5);
Cycle. m(x) = 2 sin(2πx);
Jump. m(x) = 1 + 2(x− 0.5)I(x 6 0.5) + 0.5I(x > 0.5).

Population values of y in small area j were generated under the random intercepts model

yij = m(x) + γj + εij

with x drawn from a Uniform distribution [0, 1], area effects γj and individual effects εij
were independently drawn from N(0, 0.04) and N(0, 0.16) distributions respectively, with

ρ =
σ2
γ

σ2
γ+σ2

ε
= 0.2. A sample of size n = 600 was then selected from the simulated population,

by simple random sampling. Each population was kept fixed for all simulation runs. A total
of T = 500 simulations were carried out.

The linear case represents a situation in which LIN and EBLUP are based on a good
representation of the true model and PSPL and NPEBLUP may be too complex and over-
parametrized. The cycle model defines an increasingly more complicated structure of the
relationship between y and x, while the jump one is a discontinuous function for which
LIN, PSPL, EBLUP and NPEBLUP are based on a misspecified model. Gaussian errors provide
a situation in which EBLUP and NPEBLUP consider the correct distributional assumptions
for the distribution of the areas.

For each sample LIN, PSPL, EBLUP and NPEBLUP have been used to estimate the small
area means. For each estimator and for each small area we computed the Monte Carlo
estimate of the Bias

BMC =
1

T

T∑
t=1

(ˆ̄yjt − ȳj) (15)

and with it the percentage relative bias

RB% =
BMC

ȳj
100; (16)

the root Mean Squared Error

RMSEMC =

√√√√ 1

T

T∑
t=1

(ˆ̄yjt − ȳj)2, (17)

and the corresponding percentage relative root Mean Squared Error

RRMSE% =
RMSEMC

ȳj
100. (18)

Tables 1, 2 and 3 report the RB%, RRMSE% values obtained for this study under a lin-
ear, cycle and jump signal, respectively. MSE estimation was monitored comparing MSE
estimates and Monte Carlo MSEs, and by checking 95% confidence intervals coverage rates
CR%. For MSE estimation of the PSPL estimator we used expression (13), whereas the MSE
estimation of LIN predictor was carried out following the method suggested in Tzavidis &
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Chambers (2007). MSE estimation of the EBLUP and NPEBLUP comes from methods intro-
duced in Prasad & Rao (1990) and Opsomer et al. (2008), respectively. Intervals are defined
by the small area mean estimate plus or minus twice their corresponding estimated root
mean squared error. Areas are arranged in order of increasing population size.

There is a promising result from this simulation study: the gain in terms of unbiasedness
of PSPL and LIN estimators is relevant especially when the structure of the relationship
between y and x is more complicated than the linear one and in case of misspecified models.
The average value of the RB%, in the simulation experiments, for PSPL and LIN varies from
0.12% to 0.91%, whereas for EBLUP and NPEBLUP is between 0.66% and 3.15%.

Looking at the efficiency of the estimators, their performance changes, as expected, un-
der different population models. It is evident that, under the assumption of linearity and
Gaussian errors (Table 1), EBLUP and NPEBLUP outperform PSPL, even if PSPL is still com-
petitive. In the Cycle Gaussian population (Table 2) PSPL is more efficient than LIN and
EBLUP: the ratio of the average values of the percentage relative root Mean Squared Er-
ror (RRMSE%[LIN or EBLUP]/RRMSE%[PSPL]) is greater than 1.4 pointing out that the
PSPL is at least 1.4 times closer to the true values of the target parameter. This gain is due
to the better fitting of the model upon which PSPL is based. In addition, given that it is
based on the right distributional assumptions, NPEBLUP is the best estimator in this case.
The Jump signal is linear for most of its support. This explains the very similar behavior
shown by the four estimators in this case (Table 3). It is noticeable the difference in bias
between the M-quantile based estimators and the mixed models ones; this is particularly
true for the estimates in Area 19. However, the overall RRMSE% does not seem to benefit
from such reduction in bias.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

Figures (1), (2) and (3) show how different root mean squared estimators track the true
root mean squared error of the different estimator under linear, cycle and jump signal. Each
figure has the same structure. Top left is the PSPL predictor (6) with RMSE estimated using
(13). Top right is the LIN predictor with RMSE estimator suggested by Tzavidis & Chambers
(2007). Bottom left is EBLUP predictor with RMSE estimator suggested by Prasad & Rao
(1990) and bottom right is the NPEBLUP estimator with RMSE estimator suggested by
Opsomer et al. (2008).

Figure (1) shows the area-specific values of RMSE and average estimated RMSE in
case of linear signal. The estimator (13) performs well, showing only a small amount of
undercoverage both for PSPL and LIN estimators. Given that all its underlying assumptions
are met, the Prasad & Rao (1990) and Opsomer et al. (2008) estimators of RMSE works
very well in terms of empirical coverage. However, we note that they have a smoothing effect
on the estimated variability of the small areas.

In case of cycle signal (Figure 2) the PSPL and the LIN MSE estimators have the best
performance in tracking the true variability. EBLUP and NPEBLUP MSE estimators smooth
the behavior across the areas. Under the jump signal (Figure 3) estimator (13) for PSPL and
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LIN estimators tracks the true behavior of RMSE. Both Prasad & Rao (1990) and Opsomer
et al. (2008) estimators confirm their smoothing effect.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

5 Conclusions

The PSPL model can be widely used in many important application areas, such as financial
and economic statistics and environmental and public health modeling. In this work the
PSPL models are used for small area estimation. Also in this case they appear to be a
useful tool when the functional form of the relationship between the variable of interest
and the covariates is left unspecified and the data are characterized by complex patterns of
dependence. The method proposed for small area mean estimation relies on PSPL model: it
takes advantages from the properties of M-quantile models in small area estimation and on
the versatility of the penalized splines as a tool for capturing non linearities in the data. The
method is outlier robust, it does not require strong assumptions on the data distribution and
a pre-specified hierarchical structure of the data. In addition it allows for a sample based
estimator of the MSE.

The finite-sample performance of small area mean estimator based on p-splines M-
quantile regression – PSPL – method has been compared to the linear M-quantile – LIN –
method, the EBLUP and the NPEBLUP estimators by Monte Carlo experiments carried out
for a single covariate case. Finite populations were simulated using a mixed model with
different trends with respect to x. Methods based on nonparametric regression techniques
outperform those based on linear models when such trends were not linear. On the other side,
the loss in efficiency in the case of a linear trend was not noticeable. In addition, the mixed
model based simulation was set up to investigate the performance of the proposed estimator
when the mixed models based estimators use the correct error specification. The performance
was comparable in all cases. MSE estimators provide a good tracking of real MSE in most
simulation studies. However, in some cases a poor coverage rate is shown, so that the issue of
MSE estimation requires further work. Next step is to explore the consistency of parametric
and/or semiparametric bootstrap estimators of the MSE with the analytical solution.
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Figure 1: Area-specific values of RMSE (solid line) and average estimated RMSE (dashed
line) in case of Linear signal. Areas are arranged in order of increasing population size.
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Figure 2: Area-specific values of RMSE (solid line) and average estimated RMSE (dashed
line) in case of Cycle signal. Areas are arranged in order of increasing population size.
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Figure 3: Area-specific values of RMSE (solid line) and average estimated RMSE (dashed
line) in case of Jump signal. Areas are arranged in order of increasing population size.
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Area PSPL LIN EBLUP NPEBLUP
RB% RRMSE% CR% RB% RRMSE% CR% RB% RRMSE% CR% RB% RRMSE% CR%

1 0.30 3.64 89.5 0.10 3.75 89.8 0.19 3.19 98.4 0.20 3.19 98.4
2 -0.02 3.63 91.9 0.11 3.55 91.6 -1.20 3.29 96.6 -1.21 3.30 97.4
3 0.17 3.99 91.5 0.19 3.80 91.0 0.67 3.35 96.4 0.68 3.35 96.4
4 0.20 3.14 93.2 0.27 3.22 92.4 0.82 2.96 98.2 0.81 2.95 98.6
5 0.13 2.81 93.9 0.17 2.80 94.2 -1.37 2.89 95.4 -1.38 2.90 96.0
6 -0.53 3.31 89.5 -0.42 3.24 91.2 -0.48 2.90 97.6 -0.48 2.90 98.2
7 -0.24 2.75 89.2 -0.21 2.70 91.6 -0.60 2.50 98.4 -0.60 2.50 98.4
8 -0.33 3.96 93.6 -0.21 3.87 94.2 1.30 3.76 94.0 1.30 3.76 94.8
9 0.05 3.09 95.3 -0.10 3.13 93.6 0.31 2.84 96.6 0.31 2.84 97.0
10 -0.16 2.93 92.5 -0.05 2.91 93.4 -1.13 2.87 94.0 -1.12 2.86 94.8
11 -0.16 3.67 90.2 -0.05 3.56 91.0 0.59 3.32 94.2 0.58 3.31 94.8
12 -0.48 3.49 94.2 -0.28 3.48 94.4 0.73 3.29 95.6 0.72 3.29 96.6
13 -0.12 2.77 92.2 -0.07 2.82 92.0 -0.83 2.72 94.0 -0.84 2.72 94.6
14 0.03 2.90 93.6 0.16 2.89 93.6 0.01 2.65 96.8 0.00 2.64 97.6
15 -0.07 2.91 92.5 -0.10 3.00 92.2 -0.04 2.77 95.8 -0.04 2.77 95.8
16 0.08 2.40 94.2 0.02 2.45 94.2 -0.73 2.40 96.2 -0.73 2.40 96.6
17 -0.12 2.82 93.2 -0.07 2.83 91.8 -0.21 2.63 95.4 -0.21 2.63 96.2
18 0.12 2.84 91.9 -0.02 2.75 93.0 -0.03 2.54 96.8 -0.03 2.54 97.4
19 0.07 3.94 96.6 0.21 3.81 97.2 2.69 4.55 90.4 2.69 4.55 92.6
20 0.06 2.99 94.2 0.08 3.11 92.6 0.62 2.93 95.6 0.62 2.94 96.2
21 -0.08 2.44 95.6 0.03 2.53 94.2 -0.89 2.54 94.0 -0.89 2.54 94.8
22 0.15 2.62 93.2 0.03 2.64 92.8 -0.56 2.52 94.6 -0.56 2.53 95.0
23 -0.30 3.01 92.2 0.01 3.15 91.8 0.41 2.95 92.8 0.41 2.95 93.4
24 -0.02 2.16 97.6 0.01 2.16 97.8 -1.05 2.32 95.4 -1.05 2.32 96.2
25 -0.06 2.63 92.9 -0.01 2.71 92.8 -0.14 2.53 95.8 -0.14 2.53 96.4
26 0.10 2.72 94.2 0.21 2.83 93.6 0.84 2.77 96.8 0.85 2.78 97.0
27 -0.26 3.04 93.2 -0.17 3.20 92.6 0.81 3.12 94.0 0.81 3.12 94.4
28 0.07 2.83 94.2 0.06 2.77 94.6 0.49 2.63 96.0 0.49 2.64 97.0
29 -0.21 2.53 95.6 -0.13 2.59 95.6 0.02 2.43 97.2 0.02 2.42 97.2
30 -0.01 2.56 93.6 -0.04 2.64 92.4 0.06 2.47 96.4 0.06 2.48 97.0
Mean 0.16 3.02 93.2 0.12 3.03 93.1 0.66 2.89 95.6 0.66 2.89 96.2
(abs. values)
Median 0.12 2.90 93.2 0.10 2.90 92.8 0.61 2.81 95.8 0.61 2.81 96.4
(abs. values)

Table 1: Relative Bias (RB%), Relative Root Mean Squared Errors (RRMSE%) and Coverage
Rate (CR%) in case of Linear signal. Areas are arranged in order of increasing population
size.
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Area PSPL LIN EBLUP NPEBLUP
RB% RRMSE% CR% RB% RRMSE% CR% RB% RRMSE% CR% RB% RRMSE% CR%

1 0.48 5.42 89.6 -0.16 8.77 91.2 -0.07 6.27 98.6 0.29 4.70 98.4
2 -0.26 5.34 91.1 0.45 8.24 90.0 -2.50 6.56 96.4 -1.76 4.79 97.4
3 0.28 6.18 90.0 0.19 9.93 89.0 1.60 7.48 96.0 1.06 5.09 96.4
4 0.38 4.80 92.6 0.80 7.84 92.0 2.21 6.48 97.2 1.27 4.50 99.0
5 0.03 3.91 94.4 0.19 6.00 93.8 -4.10 6.44 90.4 -1.89 4.01 96.0
6 -0.81 4.82 91.1 -0.64 7.47 90.6 -0.82 5.98 97.6 -0.66 4.32 98.2
7 -0.35 4.25 90.4 0.00 6.45 93.4 -1.61 5.45 97.4 -0.95 3.85 98.8
8 -0.52 6.53 92.6 -0.81 9.15 93.8 4.55 8.80 94.4 2.16 6.14 94.8
9 0.09 4.68 94.1 -0.30 7.29 91.6 0.39 5.89 97.6 0.46 4.30 97.0
10 -0.44 4.34 92.6 -0.07 6.46 92.4 -2.93 6.09 93.0 -1.67 4.23 93.8
11 -0.26 5.80 88.5 -0.09 7.89 93.4 1.90 6.82 96.6 0.88 5.16 95.0
12 -0.71 5.25 94.1 -0.31 7.82 93.8 2.66 7.17 96.2 1.10 5.00 97.2
13 -0.20 3.96 92.6 -0.14 5.64 94.2 -2.40 5.31 96.2 -1.19 3.91 94.8
14 0.07 4.47 92.6 0.25 6.54 94.6 -0.36 5.45 97.0 0.01 4.05 97.2
15 -0.08 4.53 92.6 -0.38 6.81 91.8 0.03 5.70 97.0 -0.05 4.26 96.0
16 0.02 3.52 93.0 -0.04 5.29 94.2 -2.26 5.10 96.6 -1.08 3.50 96.8
17 -0.42 4.54 92.6 -0.20 7.06 91.0 -0.60 5.97 95.4 -0.35 4.22 95.8
18 0.14 4.45 89.6 0.17 6.65 92.0 0.44 5.65 96.6 -0.03 3.92 96.8
19 0.79 6.81 96.3 0.12 10.37 97.0 9.80 13.79 82.0 4.92 8.29 91.8
20 0.15 4.89 93.7 -0.05 7.00 92.6 1.47 6.10 96.6 1.02 4.75 96.0
21 -0.23 3.64 94.8 -0.24 5.47 93.8 -2.89 5.60 92.8 -1.31 3.76 94.2
22 0.11 3.82 92.6 0.23 5.33 94.8 -1.61 4.84 96.6 -0.86 3.77 94.8
23 -0.47 4.67 91.9 -0.24 7.02 92.6 0.98 6.11 95.0 0.64 4.50 93.6
24 -0.12 2.99 97.4 0.01 4.51 95.4 -3.13 5.17 92.2 -1.45 3.23 96.2
25 0.06 3.90 93.7 0.06 5.67 92.8 -0.51 4.90 97.8 -0.24 3.83 96.2
26 0.17 4.19 94.8 0.55 6.48 95.0 2.50 6.14 96.6 1.32 4.28 97.2
27 -0.29 4.88 92.6 -0.07 7.09 94.6 3.22 7.06 94.4 1.38 5.14 94.4
28 0.19 4.38 93.0 0.34 6.06 96.2 1.78 5.55 97.4 0.73 4.03 97.0
29 -0.34 3.80 94.8 -0.35 5.69 93.0 0.04 4.95 97.6 0.01 3.64 97.2
30 0.08 3.64 94.4 0.03 5.55 94.0 0.32 4.86 97.4 0.11 3.71 96.8
Mean 0.28 4.61 92.8 0.25 6.92 93.2 1.99 6.26 95.6 1.03 4.43 96.2
(abs. values)
Median 0.24 4.50 92.6 0.19 6.73 93.4 1.69 5.97 96.6 0.99 4.24 96.3
(abs. values)

Table 2: Relative Bias (RB% ), Relative Root Mean Squared Errors (RRMSE% ) and Cover-
age Rate (CR% ) in case of Cycle signal. Areas are arranged in order of increasing population
size.
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Area PSPL LIN EBLUP NPEBLUP
RB% RRMSE% CR% RB% RRMSE% CR% RB% RRMSE% CR% RB% RRMSE% CR%

1 0.57 9.87 94.6 0.24 13.12 91.0 0.18 10.77 97.6 0.43 9.94 97.8
2 -0.80 8.60 91.3 0.00 9.87 91.8 -4.11 9.28 95.6 -3.15 8.51 96.8
3 -0.21 12.32 92.4 0.57 13.53 92.2 2.47 11.65 97.8 2.32 11.18 96.0
4 -0.03 11.07 93.5 0.41 12.20 91.6 2.91 10.92 99.0 2.80 10.30 99.0
5 -0.81 6.76 93.5 0.46 7.21 94.4 -3.85 7.48 95.6 -3.30 7.02 96.2
6 -1.09 9.74 94.6 -1.00 10.00 92.2 -1.15 8.76 97.8 -1.37 8.75 98.0
7 -1.01 8.04 87.0 -0.85 8.93 92.2 -1.90 8.03 97.4 -1.83 7.08 98.2
8 -0.36 18.08 92.4 -0.45 18.57 93.8 6.76 17.98 94.4 5.59 16.24 95.4
9 0.50 10.43 91.3 -0.20 12.10 92.4 1.53 10.84 95.8 1.03 9.55 97.8
10 -0.47 6.64 93.5 -0.07 7.68 93.2 -3.21 7.53 94.0 -2.83 7.06 94.0
11 -1.06 12.76 92.4 0.18 13.11 91.6 2.64 12.10 95.2 2.11 11.72 94.4
12 -2.41 13.88 94.6 -1.22 15.60 94.8 4.06 14.79 96.2 3.28 14.02 96.6
13 0.57 7.11 94.6 -0.04 8.14 92.8 -2.40 7.73 94.4 -2.19 7.10 94.2
14 0.08 7.93 92.4 0.43 9.05 93.2 0.06 8.10 96.6 0.02 7.71 97.0
15 -0.39 9.69 93.5 -0.28 9.86 93.0 0.03 8.96 96.6 -0.22 8.58 96.8
16 0.75 6.26 93.5 -0.12 6.96 94.4 -2.42 6.81 95.6 -2.01 6.12 96.8
17 -1.17 7.76 90.2 -0.26 8.61 92.6 -0.64 7.88 95.8 -0.65 7.47 95.8
18 0.72 9.19 91.3 0.21 9.21 93.2 0.00 8.34 95.8 0.02 7.74 96.8
19 6.01 37.36 94.6 2.86 40.18 95.8 31.78 49.78 88.2 26.97 44.70 91.0
20 1.34 10.86 91.3 0.33 12.03 93.8 2.59 11.25 96.2 2.21 10.31 96.6
21 -0.04 6.13 95.7 0.27 6.56 94.8 -2.42 6.49 94.8 -2.19 6.15 94.6
22 -0.11 6.49 94.6 0.06 7.47 92.2 -1.75 7.09 93.0 -1.52 6.46 94.6
23 -2.72 10.80 90.2 0.06 12.04 92.8 1.73 11.16 93.4 1.45 10.15 93.6
24 -0.03 5.26 97.8 0.01 5.36 96.6 -2.90 5.82 94.6 -2.44 5.40 95.8
25 -0.61 8.14 85.9 -0.08 8.49 93.2 -0.59 7.80 96.6 -0.45 7.36 96.6
26 -0.83 9.94 94.6 0.78 12.62 93.0 4.02 12.33 95.8 3.34 10.99 97.2
27 -0.54 13.23 91.3 -1.08 15.38 93.6 3.88 14.78 93.8 3.61 13.25 94.2
28 -0.81 9.76 91.3 0.06 10.29 94.4 1.85 9.68 96.6 1.67 9.26 97.0
29 0.65 8.29 94.6 -0.09 8.86 94.8 0.43 8.22 97.2 0.13 7.86 97.4
30 0.53 8.77 93.5 0.03 9.62 93.0 0.32 8.91 95.8 0.24 7.96 96.0
Mean 0.91 10.37 92.7 0.42 11.42 93.3 3.15 11.04 95.6 2.71 10.20 96.1
(abs. values)
Median 0.63 9.44 93.5 0.25 9.86 93.1 2.41 8.93 95.8 2.06 8.54 96.6
(abs. values)

Table 3: Relative Bias (RB%), Relative Root Mean Squared Errors (RRMSE%) and Coverage
Rate (CR%) in case of Jump signal. Areas are arranged in order of increasing population
size.
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