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Abstract

In this paper we shallpresent a new approach in studying the quasiconvexity and
the pséudoconvexity of a quadratic fanction. All classical resulfs and new ones are

obtained.
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1 Introduction

Generalized convexity of quadratic functions has been widely studied; the mafm' historical
refefeﬂces are Martos [11, 12, 13}, Ferland [8], Cottle and Ferland [6], Schaible [14, 19, 18,
21].

In this paper we shall put together some results related to generalized convex quadrat.fac
functions. After noting that quasiconvexity can differ from convexity only on a proper
subset S of R® and that quasiconvexity reduces to pseudoconvexity on an open set, we
shall characterize the maximal domains of quasiconvexity and pseudoconvexity of a non-.
convex quadratic function. All the results that we are going to develop are obtained by

means of an approach based on the second order characterization of pseudoconvexity. The
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ghiven approach differs from the one suggested in [22]

These results will be specified in order to obtain the criteria established by Martos 11,
12, 18] related to generalized convexity over the nonnegative orthant R7.

The suggested approach allows also to characterize the pseudoconvexity of a function

which is the sum between a linear function and the product of affine functions.

2 Preliminary results

In this section we shall establish some properties of an n % n symmetric matrix .
With this aim we introduce the following notations:
& Ar,Ag,, ..., A, are the eigenvaiues of the n ¥ n symmetric matrix ¢J;

{v!, 02 .., 0"} is an orthonormal basis of eigenvectors associated with A1, Az, , ..., An-

In order to define each of the eigenvectors uniguely, we shall assume that the first
component of any eigenvector is positive (this can be obtained by multiplying it by

- (-1) if necessary).
e ker(Q is the kernel of @, i.e., ker@ = {z € R Qz = 0};

o rank( is the rank of @, i.e., the maximum number of linearly independent columns

(or rows) of @;

e v_(Q) is the number of the negative eigenvalues of ) (according to their multiplic-

ity).
Regarding the number of the negative eigenvalues of ¢) we have the following useful lemma.

Lemma 2.1 Let Q be ann xn symmetric matriz and assume the existence of two vectors
u, w such that

uTQu <0, wiQuw <0, u'Quw = 0.

Then, & has at least two negative eigenvalues.
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Consequently, Z(ﬁz%‘ - al-ﬁi)%\i < () so that a second negative eigenvalue exists and the
i=1 ) )
thesis is achieved. ‘ i : ‘ - 1

Noﬁv we shall consider a symmetric matrix having one simple negative eigenvaiué and
we shall establish, for such a matrix, some fundamental properties which will be used in
the next sections in characterizing the quasiconvexity and pseudbconvexity of quadratic
functions.

From now on we shall assume Ay <0, A; > 0,0=2, .,pand Ay =0,4=p+ 1,_;.,n.

The following lemma holds.

Lemma 2.2 Let (0. be an n X n symmetric matriz and assume V- (@) == 1. Then:
i) if u € R is such that w'v' = 0, then either u € ker@ or uw'Qu > 0;
i) u € kerQ if and only if u'Qu = 0 and uTv! = 0.

Proof ©) Let u= 3 1, oyv*. We have 0 = uTo! = o, so that u = S, ot Ifu o ker@,
there exists i € {2,..,p} such that o # 0. It follows that vTQu = 7 _,(a)*A > 0.
it) If w € ker@), obviously we have wTQu = 0 and v"v' = 0. The converse statement

follows directly from ¢). _ _ 0



Consider now the following opposite cones associated with the matrix Q:

T={z:27Qz <0, 274" >0}, ~T = {z:27Qz <0, 27v' <0}

We shall see in the next section that cones T and 7T will play a fundamental role
in characterizing the maximal domains of the quasiconvexity and pseudoconvexity of a
- quadratic function.l |

The following theorems hold, where 8T denotes the boundary of T". Note that since T’
and —7 are opposite cones, the prop.erties of —T can be easily derived from the ones

which will be established for T,

Theorem 2.1 Let Q be ann x n symmetric matriz and assume v..(Q) = 1. Then:
i) ker@ =T N (=T);
i) T is a pointed cone if‘an'd only if ker@ = {0}.

Proof 1) From ii) of Lemma 2.2 we have ker@) Q.TO(WT').X if 2z € Tn(=T) we necessarily
have 7 Qz < 0, z7v = 0; consequently, i) of Lemma 2.2 implies that © € ker@.

it) Since T is pointed if and only if TN (—=T) = {0}, the thesis follows from i). Il

Theorem 2.2 Let Q be ann xn sy;.,rmmetm'c matriz and assume v_(Q) = 1. Then:

i) zo € intT if and only if 22 Qxy < 0 and zfv* > O,"

i) :1:6 € 0T\ ker@ if and only if 25 Qo = 0 and zv' > 0;

i) intT N int(~T) = 0; |

i) TU(~T) = {z € R 27 Qz < 0};

w) int(T U (~T)) = intT U int(~T).

Proof 4) This is obvious.

i) This follows by noting that zfQzg = 0 if én_d only if zp € 87T U 8(—T) and that
x4 € ker@ if and only if zf v # 0.

112) Tt follows from i) and from its analogous result for cone -7
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iv) This follows directly from the definitions of T and —T.
v) Since int(T U (~T)) = {z-€ R : 27 Qz < 0} 2 intT Uint(--T), we must prove that
intT Uint(=T) 2 {z € ®" : 27Qz < 0}. Let z such that z7Qz < 0. From Lemma 2.2

we necessarily have z7v! # 0 and the thesis follows. .

The following theorem points out the convexity of cones 7" and ~T'.

Theorem 2.3 Let @ be an n x n symmetric matriz. If v_(Q) = 1, then T is a closed

COTUET CONE.

Proof Let P be the orthonormal matrix which has the eigenvectors vt ..., v" as columns,
and let H be the diagonal matrix with the first p diagonal entries given by (——}\1)“%,
(Ag)“}i, s ()\p)"%, and all the others equal to 1. It is well kno;wn that the linear transfor-
mation z = P Hy reduces the quadratic form z7Qz to the canonical form $ %, yi -y} =||
7 |* —~yf, where § = (Y2, %) -

Consider set C = {(gn,d) < [ 717 ~v% <0, 1 > 0} = {(yn.7) : | 7 <, w1 2 O}.
It is easy to verify that C is a closed cone; we shall prove that ¢ is convex. Let
z= (2,2 € C,w= (w,w) € C. Since || Z |< =, }|1B < wy, we have || t2+ (1 —-t)w ||<
tlz]| +H1—=1) | @<tz + (1 — t)w for all t.€ [0,1]. Consequently, tz+ (1 —Hw-€ C
for all t € [0,1] so that C is convex.

. Taking into account that z7v* = y* HT PTv! and that vt = Pe', where ¢! is the unit vec-
tor e* = (1,0,.., 0)7, we have zTv! = yT He = (=)~ 5gTet = (m)\;)f%yl. Consequently,
y, > 0 if and only if 27v! > 0 and this implies PH(C) = T. The thesis follows from the

linearity of the transformation PH. ]

Remark 2.1 Given a convez set C and a linear map A, one has A(riC) = ri(ACY, but,

in general, the image of a closed convex set is not closed. When C is closed convex cone

I1et § be a convex set and let W be the smallest linear manifold containing 5. Then, the relative
interior of &, denoted by riS, is the set of all interior points of § with respect to the topology induced
by #"* on W



such that C N (—=C) = kerA, then A(clC) = cl(AC). Consequently, from 1) of Theorem

2.1 and from Theorem 2.8, we have the following c.om'llary.

Corollary 2.1 Let Q be an n x n symmetric motriz and assume v.{Q) = 1. Then:
i) QUniT) = riQ(T)), QUint(~T)) = ri(Q(~T));
i) Q(T") and Q(—T) are closed conver cones.

Consider now the set
7 ={zeR*\ {0} : 3w € intT such that 2fw =0}

and denote with- T+ and 7™ the positive polar and the negative polar of T", respectively.

The following theorem characterizes Z in terms of the two polar cones.
Theorem 2.4 Let Q) be an n xn symmetric matriz. If v-(Q) = 1, then Z = (T UT™),

.Proof Since w € intT if and only if either 27w > Oforallz € T or 27w < Gforall z € T,
. we necessarily have ZNT+ = and ZNT~ = §. Consequently, Z C (I""UT ). Consider
now an element z € (T UT7)° and assume by contradiction that 27w # 0V w € intT.
The convexity of intT implies 27w > 0V w e intl or Zw < 0V w e T, ie.,
z € (TTUT™), and this is a contradiction. It follows that (TTUT7)* C Z and the thesis

is achieved. O

The following lemma characterizes the image of the cones T and —1' under the linear
transformation z = Qz. The obtained results will play a fundamental role in characteriz- -

ing the maximal domains of quasiconvexity of a quadratic function.

Lemma 2.3 Let Q be an n x n symmetric matriz and assume v.(Q) = 1. Then:
QUntT) = riT~, Q(T) = T~, Q(int(=T)) = ril™*, Q(=T) = T*, QT U (-T))) =
Z N (ker@)t.

Proof First of all we shall prove that Q(intT) C riT~, Q(int(~1)) C m’T*,‘ QRUT U
(=T))) C (riT U riT e

Let 7o € ntT. Since 23 Qzo < 0, Qo ¢ T and, taking into account Lemma 2.1,

6



Qzo ¢ Z. Consequently, Qzy € T~and, from Corollary 2.1, Q(intT) C i, Similarly
we have @(int(—T7)) C ril™*.

Now we shall prove that Q({T"U (—T))¢) nril™ = 0.

Let zp € (TTU{=T)), ie. 2 Qz > 0, and let zo € intT, so that Gz € rél™. If
Qz € il then Q([z, zo]) € ril"~ because of the convexity of ré7~. On the other
h.and, 2o € intT, z, ¢ T imply the existence of & € [2g, zo] N AT for which Q% € IT".
Since Qzg € i1, and this is a contradiction.

In a similar way it can be proven that Q((TU(=T))%)NriT+ = §, so that Q((TU(~T7))¢) C
(ril~ Uil )e, |

Since !{e'rQ =T U (~T) implies T+ NT~ C (ker@Q)* = ImQ = {w = Qz, z € R}, from
Coroliary 2.1 the thesis is achieved. ' o

3 Quadratic functions

In this section we shall characterize quadratic functions which are generalized CONVEX.

Consider the following quadratic function

Qz) = % 2'Qr+q'x (3.1)

where @ is an n X n symmetric matrix, g € &

We shall refer to
1
Qo(z) =5 2"Qz (3.2)
as the quadratic form associated with (3.1).

In order to have a self-contained paper, we recall the definition of a quasiconvex function

and of & pseudoconvex function.

Definition 3.1 Let f be a differentiable function defined on an open set containing the
conver set S C R™ |
i) f is quasiconwer on S if

21,75 € 8, flan) 2 flza) = (z2 — 1)V f(z:) <0 (3.3)
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i) f is pseudoconver on S if

Ty, Ty € S, flz1) > f(za) = (20 — z1)"V fzy) <0 (3.4)

Remark 3.1 In general, a pseudoconvex function 1s. quasiconves too; nevertheless, quasi-

convexity is equivalent to pseudoconvezity when the function does not have critical points.

A useful second order characterization of pseudoconvexity of Q(z) is the following one:

@(z) is pseudoconvex on an open convex set S if and only if (3.5) holds
ze 8 weRw (Qr+q)=0=uw'Quz>0. (3.5)

The following theorem shows that quasiconvexity reduces to convexity if the domain is

the whole space R".

Theorem 3.1 The quadratic function Q(z) is quasiconvez on R™ if and only if Q(z) is -

convez on R

Proof Since convexity implies quasiconvexity, the converse statement remains to be proven.
By contradiction, assume that Q(z) is not convex. Then, @ has at least one neg-
ative éigenvaiue A1, Let w be a normalized eigenvector associated with A; and let

o) = Q(tw) = 1 M2 + ¢ ¢"w,t € R. The restriction ¢(¢) has a strict local maxi-

mum point at £ = w%—w and consequently, ¢(¢), and in turns ¢(z), is not quasiconvex
and this contradicts the assumption. : 0

‘Theorem 3.1 implies that quasiconvexity can differ from convexity only on a proper sub-
set § of ®*. From now on, following Martos [13], we will insert the word “merely” to

distinguish quadratic quasiconvex (pseudoconvex, etc.) functions that are not convex. -

Remark 3.2 Recalling that the Hessian matriz of a twice quasiconvez function evaluated
at a point of its domain has at most one negative ez’genvalﬂei a necessary condition | for a
cjuadmtic function to be merely quasiconvez ts that the matriz Q) has one simple negative

eigenvalue, i.e., v.{Q) = 1.



The f&)llowing theorem shows that quasiconvexity reduces to pseudoconvexity on every

open convex set of |™.

Theorem 3.2 The quadratic function Q(x) is quasiconvex on an open conver set SCR

if and only if it is pseudoconvez on 5.

Proof Since pseudoconvexity implies quasiconvexity, the converse statement remains to be
proven. The thesis follows from Theorem 3.1 if Q(z) is convex, otherwise @ has one simple
negative eigenvalue A;. Let w be a normalized eigenvector associated with A;. Taking
into account Remark 3.1, it is sufficient to prove that the gradient of @(z) cannot vanish.
By contradiction, assume the existence of zg € S such that VQ(z) = Qzo+ g = 0, and
consider the restriction ¢(t) = Q(zo + tw). Since @(t) = £ \#® + Q(zo), this restriction
has a strict local maximum point at £ = 0, so that w(t) and in turns Q(z), is not quasi-

convex, which contradicts the a,ssumption. ' 0

Note that Theorem 3.2 implies:

e a quadratic function which is merely pseudoconvex on an open convex set S has no

critical points;

e a quadratzc function which is merely quasmonvex on a convex set S is merely pseu-

doconvex at least on intS;

e a quadratic function which is merely pseudoconvex on an open convex set Sis -

merely quasiconvex (not necessarily pseudoconvex) on the closure of 5.

Remark 3.3 [t is emportant to point out that any characlerization of pseudoconverity
of a guadmmc functzon Q(z) on an open conver set S allows us to simultaneously obtain
eriteria for the quasiconvezity of Q(x) on the closure of 5. Thzs fact simplifies the analysis
in the sense that, in order to characterize the quasiconvezity of Q(x) on S, it 18 sufficient .

to study the pseudoconvezity on the interior of S.

Now we are able to find the maximal domains of quasiconvexity (pseudoconvexity) of a

quadratic form and of a quadratic function.



Theorem 3.3 Let Q be annxn symmetric matriz. Ifv..(Q) = 1, then the quadratic form
Qo(z) = & z¥Qz is merely quasiconves on the closed convex cones T,—T. Furthermore,

T and —T are the mazimal domains of quasiconvexity of Qo{z).

Proof Taking into account Remark 3.3, we shall prove that Qo(z) is pseudoconvex on
intT. If not, from Remark 3.1, there exist zo € intT’, w € R" such that wQzo = 0 and
wlQw < 0. Since z3 Qzo < 0, from Lemma 2.1 () has at least two negative eigenvalues,
which contradicts the assumptions. Similarly, we obtain that Qu(z) is pseudoconvex on
intl(—~T)., Consequently, Qo(z) is quasiconvex on 7" and on —T..

The maximality of the domains remains to be proven. To see this, assume that G ($) is
pseudoconvex on an open set S such that SN(TU(~T)} # G andlety € S,y ¢ TU(-T).
Then y7'Qy > 0 and from Lemma 2.3, Qy € Z. Consequently, there exists 2o € intT" such
that 27Qy = 0, 2} @zy < 0, which contradicts (3.5). The thesis is achieved. 1

Taking into account Remark 3.2, Theorem 3.3 may be re-stated as follows.

Theorem 3.4 A quadratic form Qo(z) is merely qUasiconves on a convez set S C R",
with intS # 0, if and only if

i) v-(Q) = 1;

# SCT, orS§~T.

We shall prove that the maximal domains of quasiconvexity of a quadratic function are
obtained by the ones (£7") associated with the quadratic form by means of a suitable
translation. To this end, firstly’ we shall state the following theorem which gives a nec-
essary condition for a quadratic function to be quasiconvex and which points out that,
unlike the convex case, the sum of a quasiconvex function with a linear function is not,

-in general, quasiconvex.

Theorem 3.5 Assume that the quadratic function Q(z) = & 27 Qz + ¢"x is merely qua-

siconvez on an open convex set S C R*. Then, rank@ = rank|Q, q|.

Proof The thesis is trivial if ¢ = 0. Consider Im@Q = {Qz, v € R} and assume by
contradiction that ¢ ¢ Im@. Then, for every fixed z € R, Qz +¢ ¢ ImQ and, in
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particular, Qz + ¢ ¢ T+ U T~ C ImQ. From Lemma 2.3, we have Qz +q € Z s0 that,
from Theorem 2.4, there exists w € intT such that wT(Qm +¢) = 0. Let zp € 5 and
consider the restriction ¢(t) = @Q(zo + tw). By means of simple calculations we have
@ (0) = wT(Qxzo + ¢) = 0, ¢"(0) = wTQw < 0 so that ¢ = 0 is a strict local maximum for
(t) and this implies that @(z) is not quasiconvex on S, which contradicts the assump-

tion. It follows that ¢ € Im@Q or, equivalently, rank@ = rank[Q, g]. ‘ .

Remark 3.4 Note that w € Im@Q if and only if w € {ker@)*?. In particular, rank@ ="
rank[Q, q) implies that g € (ker@)*.

Theorem 3.6 Consider the quadratic function Q(z) = } 2" Qz + ¢"z.

1If there e:ﬁsts s € R" such that Qs+ q =0, then: |

i) Q(ac) is merely quasiconver on the closed convez cones s+ T,s — T if and only if
Qol(z) = § ¥ Qu is merely quasiconvez on T, =T, respectively.

i) Ifv.(Q) =1, then s+ T and s—T are the mazimal domains of quasiconvezity of Q(x)

and we have
s+T={zeR: (z-87Qz~s) <0, () z — 5) > 0} (3.6)
s—T={zeR": (z-s57"Qx—s) <0, ('U?)T(a: — 8} < 0} (3.7)

" Proof 1) Q{x) is pseudoconvex on s i intT" if and only if (3.5) holds with § = s & intT.
Since z € sintT fandonlyifz —s=u € izjntT,_ we have Qr+ ¢ = Q(z ~ 8) = Qu s0
that Q(z) is merely pseudoconvex on s:éntT" if and only if Qo(z) is merely pseudoconvex
on £intT and the thesis follows.

i1) Theorem 3.3 implies that +7" are the maximal domains of quasiconvexity of Qo(z) so
that, taking into account ), s 4 T are the maximal domains of quasiconvéxity of Qx).
Finally, z € s + 7" if and only if z — s € £T, so that (3.6), and (3.7) hold.

The proof is complete. : N

2Given a linear subspace W C R, Wt = {ze R": 2Tw =0, Ywe W}
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Remark 3.5 If Q is a singular matriz, then a stationary point of Q(z) is not unigue.
However, the characterization of the mazimal domains of quaszcon'ue’mty i3 mdependent
of the particular statwmw"y ‘point used. To see this, let 51,80 be two distinct stationary
points, i.e., Qs1 +q = Qsy+q = 0. We have 51 = sz +u, u € ker@Q) C TuU(=T). It
follows that s; 2T = sy +uE£T = g5 £ T. '

The previous results allow us to characterize the merely quasiconvexity of a quadratic

function.

Theorem 3.7 The quadratic function Q(x) is merely quasiconvez on a convez set S with
nonempty interior if and only if |

Jrv-(@) =1;

i) there exists s € R™ such that Qs +g=0;

iti) S C s T.

Proof Assume that Q(z) is merely quasiconvex on 5. We necessarily have v_(Q) = 1 and
from Theorem 3.5, %) follows; 47} is a direct consequence of Theorem 3.6.

Conversely, the thesis follows from Theorem 3.3 and from Theorem 3.6. .

Corollary 3.1 If Q(z) is merely ‘quasicén'uem on a conver set S with nonempty inferior,

then Qo(z) is merely guasiconb@:z: on S — s, where s 18 such that s+ g = 0.

Proof The thesis follows from Theorem 3.7, taking into account Theorem 3.3. 0

The following examples clarify the results given in Theorem 3.4 and in Theorem 3.7,

Example 3.1 Consider the quadratic form Qo(z) = 223 — 25 — 212
4 1] ‘
We have Q@ = ,/\1mlmx/l{)<(},)\g=1+\/10>O,fulmﬁwith
1 -2
v = (1,3 +10)".

Theorem 3.4 implies that Qu(z) is quasiconvez on the mazimal domains T, —T. It z's‘easy

to verify that T = {z = o(1, )T + 8(—1,2)", «, § > 0}, so that the positive and negative
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polars of T' are respectively,

T+ = {z = oy (-1, )T + % (2,1)7, o1, B 2 0},

T~ = {z=a(-1,1)" + 52 1), a1, f <O}

Now we shall verify that the image bf T under the linear transformation ¢ is L.

In fact, Q(T) = {y = aQL, D)7 + AQ(-1,2)", o, § 2 0} = {y = =3(-1,1)"
362, 1)7, a, 820} ={y=0a:(=11)" + A2, 1T, on, By <0} =T".

By means of similar calculations we can verify that Q(-T) = T

Let us note that the nonsingularity of @ implies that the quadratic Function Q(x) = Qolz)+

qTx is quasiconvez for every q € R* on the mazimal domains s + T and s — T, where

s =~ q.

Example 3.2 Consider the quadratic function Q(z) = —x? w33 — 201 Tg -+ 201 + 225, We
-2 -2

have @ = L g=(2,2)T, Ay ==4 <0, lpg=0, 0! = H_UIT with v = (1,1)T.
-2 =2

Note that Q(z) s a concave function; nevertheless, since rank @ = rank @4, Qz) |
18 also merely quasiconvez on s + T and on s — T, where s 1s any vector of the kind '
s = (s1,—8 + )7, 8 € R Takmg into account that TQxz < 0 Vo € R?, we have
s+T={zeR: (W) (z-s)>0}={zch: zy + T2 — 1> 0},

At last, we shall characterize the merely quasiconvexity of a quadratic function over a

half-space.

Theorem 3.8 Q(x) is merely quasiconvez on the half-space H = {z € " : hfz+ho > 0}
if and only if (3.8) holds:

I

(@) =1, ker@=h", TFER: =P, ho < Froy

(3.8)
Proof Assume that @Q(z) is merely quasiconvex on H. From Theorem 3.7, we have
HCs+T CP={zeR: @Y (z—-s) 20,00 HCs~TCIY ='{:1: e R
(w))T{z — 5) < 0}. Since H C T or H C 'y, 0H and 0L are necessarily parallel hy-
perplanes so that b = kv', k # 0, ie., h is an eigenvector associated with the negative
eigenvalue A;. Obviously, k > 0 implies H C I', while k& < 0 implies A € I'). We shall

limit ourselves to considering the case k > 0 since the other one is perfectly analogous. |
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Note that H C I'if and only if hg < —hT's; when ho = —~h¥s we have H = 5+T = [" and

T={zecR:27Qz < 0,hTz >0} |

Since the quadratic form -é—a:TQx is merely quasiconvex on T and on =T, by means of |
continuity, we have é’ETQZC < 0, Vo e R and, becaﬁse v_(Q) = 1, this implies that
ker() = h* and: Im@ = {kh, k € R}. Since mnk@ = rank(Q,q}, ’rhere exists § € |
such that ¢ = fh. If 3 = 0, we have s € kerQ = h* so that hy < —~hTs = 0 and
(3.8} holds. Tf 8 # 0, we can choose any s € $ + ht, where Qs = —gq. In particu-

. lar, s = (sg + RN ImQ is an eigenvector of @ and thus Qs = X\;s. It follows that

T T Ri? R4
ho < —hTs = 1502 — WAL _ pIAE _ g IAIC

Conversely, by choosing s = wj@;h, it, is easy to verify that (3.8) implies i), i}, and iii) of
Theorem 3.7. 0O

Corollary 3.2 Q(z) is merely quasiconvez on the half-space H = {z € R" : Wl gtho > 0}
if and only if Q = uhhT, g = fh, with <0 and hg < 2.

4 Quadratic functions of nonnegative variables

By specifying the results given in the previous section, it is possible to estéblish criteria
for generalized convex quadratic functions on R%. These results were obtained for the first
time by Martos in [11, 12], by introducing of the concept of positive subdefinite I;:latrices.
Now we shall characterize the quasiconvexity of a quadratic form on the honnegative
orthant. The first result points out the relationships between the nonnegative orthant

and maximal cone T

Theorem 4.1 The quadratic form Qo{x) is merely quasiconvez on R if and only if

1) v (Q) =
i) R C T
Proof From Theorem 3.4, Qo(%) is merely quasiconvex on R} if and only if i) holds and

either R% C T or R} C —T'. This last inclusion cannot hold; in fact (v})Tz <0, Vz € RY

implies that ' € N and this is a contradiction since the first nonzero component of vt
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ig positive. The thesis follows. | €1

The following theorem characterizes a quadratic form on the nonnegative orthant in terms

of the sign of the elements of matrix Q.

Theorem 4.2 The quadratic form Qq(x) is merely quasiconver on R if and only if
i) v (Q)=1;
4) Q<04

Proof Assume that ) 5nd i1} hold and let T" be the subspace spannéd by the norrriélized
eigenvectors associated with the nonnegative eigenvalues of (J; we have I' = {z e R
. (v1)Tz = 0}. Since :CTQQ_: >0 forall z. eI, and xTQa/:rg 0 for all z € R, I' is a sup-
porting hyperplane to R} at the origin, so that »' € R". Consequently, the elements of
R satisfy the inequalities J:TQ:I; <0, (W)Tz > 0sothat R C T ahd the thesis follows
from.Theorem 4.1. ’ '
Assume now that Qq(z) is merely quasiconvex on R},

From Thebxem 4.1, i) holds and furthermore R? C T so that z7Qz < 0 for all x € RY;
in particular ()7Q¢ = gz < 0, ¢ = 1,..,n  Consider now the submatrix of @,

i Qg
Qy=|

and the restriction ¢{z;, ;) = +(quz? + 2qij¢ixj + 53)
Qi 95 ‘
Since @(zi,z;) < 0, V{z;,z;) € RE, we have ¢; < 0 when qug;; = 0. Consider
the case ¢z < 0, g;; < 0. The quasiconvexity of ¢ implies that @y has at most
on.e negative eigenvalue, so that gugy; — ¢ < 0. If gugy; — ¢f; < 0, the equation
- Gzl + 2qi753; + g7 = 0 has, for every fixed z; (or ;), two roots which cannot be
positive since ©(z;, z;) <0, V(zi,z5) € RE; consequently, ¢; < 0.
If gugi; — ¢ = 0, we havelcp(xi, ;) == ﬁ;(qm:ct + ¢;;z;)%. This function has a line r of
critical points which are global maximum points; since the quasiconvexity of ¢ implies |
that r M entR3. = 0, we necessarily have g;; < 0.

It follows that gy < 0, Vi, = 1,..,n, i.e, @ <0 and the proof is complete. 0

3Q < 0 means q;; <0, Vi, .
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Theorem 4.3 Let Q(x) be merely quasiconves on R2. Then, Qo(xz) is merely quasiconvex

on RT .

Proof From it) of Theorem 3.6, either R C s+ T or W} C s— 7T Let v} > 0 be the first
nonzero component of v'; since te! € R7, ¥t > 0, we have (v!)7 (te/ —s) = tv] —(v")"s > 0,
for a large enough t. It follows that ®% C s+ T. Consequently, we must prove that
Rt C T, de, 27Qz < 0, (v)7e 2 0, Vo € R}. Assume the existence of I such
that 7 Qz > 0 {(v')T% < 0). Since tZ € R, V¢t > 0, for a 1afge enough t we have
(tZ — 8)TQ(tz — s) > 0 ((v")T(tZ — s) < 0) and this is a contradiction.

Consequently, R} C T, so that ¢y is merely quasiconvex on R7. ' .

~ The following example shows that the converse statement of Theorem 4.3 does not hold;

we need some additional assumptions on the vector ¢ which will be given in Theorem 4.4.

Example 4.1 Consider the quadratic function Q(z1, T2) = —Z1%2 + 21 — Ta.
o0 -1 1
We have @ = 5 , =1 .
-1 0 -1
Qol(1, 22) = —T12y is merely quasiconvex on R% wccording to Theorem 4.2. On the other

hand, Q(x1,xq) is not quasiconver on %i, since its restriction on line xo = z; + 2 has a

strict local mazimum point at (1,3).

Theorem 4.4 A quadratic function Q(z) = § z7Qz + ¢"z is merely quasiconvez on RY

if and only if

) (Q) =1;

i) Q < 0;

1ii) there c»:.iists s € R such that Qs +¢ =0, g's > 0;
w) g < 0.

Proof Assume that ¢)-iv) hold. From Theorem 3.6 we must prove that &} C s+ 71 =
{ze®R: (z-38)"Q(z~35) <0, WHT{(z—~s) = 0}.

We have (z — 8)TQ(z — 5) = 27Qz + 2¢7z — ¢7s, so that ), iii) and 4v) imply that
(z — 8)'Q(z —s) <0, ¥z € R?. From Theorem 4.2 and Theorem 4.1 we have R} C T'
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and this implies that v* € R7. On the other han&, sTyl = isTQvl = 'f*“"}"‘]*l"qTUE < 0, and
consequently, (v))7(z —s) > 0, ¥z € R}, so that R} C T,

Assume now that Q(z) is merely quasiconvex on ®%. From Theorem 3.7 we have v (Q) =
L,Ise R :Qs+q=0, and R? C s+ T, while from Theorem 4.3 and from Theorem
4.2, we have @) < 0 and R € T. It remains to be proven that ¢ < 0 and ¢%s > 0. The
inclusion R} € ¢+ T implies théut 0es+T, e, s € —T. Consequently, sTQs < 0 and r
since g¥s = —s7Qs, we have ¢'s > 0. .Furthermore, from Lemma 2.3, Qs € T, Le.,
g € T it follows that ¢'z < 0V z € T and, in particular, ¢Fz <0V z € R so that
g < 0. |

The proof is complete. o

5 Pseudoconvexity of a quadratic function on'a closed
set |

In this section we shall characterize the maximal domains of pseudoconfrexity of a non-
convex quadratic function. In particular, we are interested in analyzing pseudoconvexity
on the nonnegative orthant R7 since many extremum q1I1adr'a,tic problems have a feasible
region contained in R and not just in the open set intR%. Since R} is a closed set, we

shall refer to the following definition of pseudoconvexity at a point.

Definition 5.1 Let f be a differentiable function defined on an open set of R* containing

the convex set S. f 1s pseudoconves at o € S if
2 €8, f(z) < flzo) = (2 —20)TVf(20) < 0.

Obviously, a function is pseudoconvex on a convex set if and only if is pseudoconvex at
every point of the set.

Since a non-convex quadratic function is quasiconvex on a convex set S if only if it is
pseudoconvex on mtS , we must further investigate the study of the pseﬁdocomvexity on

the boundary of S, starting from the maximal domains of quasiconvexity of a quadratic

17



f(_t)rm..
Regarding this, the following lemma holds.

Lemma 5.1 Consider the quadratic form Qo(z) = % z7Qz, and assume v_{Q) = 1.

Then, Qolz) s pseudoconvez at To € =T if and only if VQo(ze) = Quo # 0.

P%oof Since Qolx) is merely pseudoconvex on #int1" (see Theorem 3.3 and Theorem 3.2},
we must investigate the boundary of cones T and —7T. We shall consider 07" since the
other case is analogous.

Qo) is pseudoconvex at zq € T if and only if (5.9) holds:
o€ 0T, z €T, Qulz) < Qolzo) = (z — 20) Qo < 0. (5.9)

Obviously, (5.9) implies that VQo(zo) = Qo # 0.
Conversely, let zo € 97T'; we necessarily have Qo(zo) = 0, so that Qo(z) < Qo{zg) = 0
implies that = € intT. On the other hand, Qxo # 0 implies that Qzg € T\ {0} so that

TQxy < 0, Yz € intT. Since (z — 20)7 Qzo = 2T Qxy, the thesis is achieved. 0

' The following theorems, which are a direct consequence of Lemma 5.1, characterize the

maximal domains of pseudoconvexity of a nonconvex guadratic form.

Th_eorém 5.1 Consider the quadratic form Qo(z) and assume that v.(Q) = 1. Then the
following properties hold: ' |
1) Qolx) is merely pseudoconvex on_the mazimal domains T\ ker@, —T \ ker@);

it} Qolz) is merely pseudoconwez on T'\ {0}, =T\ {0} if and only if @ is nonsingular.
Theorem 5.1 may be re-stated as follows.

Theorem 5.2 A quadratic form Qo(z) is merely pseudoconvez on a conver set S with
nonempty interior if and only if '

Jr-(@) =1

i) S CT\ker@, or SC =T\ ker@.

Taking into account i} of Theorem 2.1, the maximal domains T \ ker@, =T \ ker@ can
be characterized by means of the inequalities (v1)7z > 0, (v1)Tz < 0, respectively. More

exactly, we have the following theorem.

18



Theorem 5.3 Consider the gquadratic form Qo(z) = % z'Qz and assume v_{Q) = 1.

Then, the mazimal domains of pseudoconvexity of Qo{x) afré‘g'éven by
T\kerQ={ze®:27Qx <0, (v')'z> 0}
~T\ kerQ = {z € R*: 2" Qz <0, () z < 0}
| Thé relation between the pseudocon{rexity of & quadratic function and the pseudoconvexity .

of the corresponding quadratic form is specified in the following theorem.

Theorem 5.4 Consider the quadratic function Q(z) = 3 tT'Qx + ¢z, and assume the
existence of s € R* such that Qs +q = 0. Then, QR(xz) is pseudoconvez on s £ T if and

only if Qo(z) = 1 zTQz is pseudoconver on T
Proof Q(z) is pseudoconvex at zo € s + T if and only if
ses+T, Q) < Qlag) = VQzo)(z —70) <0. (5.10)

Set yo = zo—s € T,y =2 —s € T. We have Q(z) = 3(z ~ )TQ(z — s} ~ 1sTQs =
Qoly) — 1s7Qs, Q(xo) = Qolyo) — 1sTQs. Tt follows that Qz) < Q(zo) if and only if
Qoly) < Qolyo). Purthermore, VQ@{mo) = Qzo + g = Q(zo ~ 8) = Qyo = VQo(yo), s0
that VQ(zg)" (z — zo) < 0 if and only if VQolye)  (y — o) < 0. Consequenﬂy, (5.10) is

equivalent to

weT, yeT, Qly) < Qolyo) = VQo{o)"(y — ) <0

i.e., the pseudoconvexity of Q{z) on s+ T is equivalent to the pseudoconvexity of Qo(y)
on T
Analogously, the pseudoconvexity of Q(z) on s — T is equivalent to the pseudoconvexity

of Quly) on =T. =

The following lemma extends Lemma 5.1 to a quadratic function.

Lemma 5.2 Consider the quadratic function Q(z) = % T Qz+¢Tz withv_(Q) =1, and
assume the existence of s € R* such that Q@s-+q = 0. Then, Q(x) is merely pseudoconver

Cat zp € s £ T if and only if VQ{zxo) = Qze + g # 0.
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Proof From. Theorem 5.4, Q(x) is merely pseudoconvex at zo € s+ T if and only if Qo 18
merely pseudoconvex at yo = 2o — § € +T".

Since Quo = Q(zo — 8) = Qzo + g, the thesis follows from Lemma 5.1. .

As a direct consequence of the previous results, we have the following characterization of

the maximal domains of pseudoconvexity of a quadratic function.

Theorem 5.5 The guadratic function Q(z) = i 2¥'Qz + ¢"x is merely pseudoconver on
a conves set S with nonempty interior if and only if

i) (@) =1, |

it) there exists s € 3?“' such that Qé +g=0;

iii) S C s+ (T\kerQ) = {z € R : (z - 5)7Qz — ) £ 0, (W) (z —s) > O}, or
S Cs—(T\kerQ)={weR: (z—5)7Qz —5) <0, ()" (z—s) <0}

5.1 Pseudoconvexity on the nonnegative orthant

The above criteria can be specified to the case where S is the nonnegative orthant.

Theorem 5.6 Let Qo(z) = § 27 Qx be merely quasiconves on §R'1. Then, Qo(z) is merely

pseudoconveﬂz on R\ {0} if and only if @ does not contain a column (or a row) of zeros.

Proof From Lemma 5.1, Qo(z) is pseudoconvex on R% \ {0} if and only fQr#£0Vr €
R\ {0} By denoting-with ¢f the j-th column of @, j = 1,..,n, we have Qz =
S e @3¢, w2 0. Since @ < 0 (see Theorem 4.2), Qz = 0 if and only if for some j
we have ¢/ = 0. g O

Theorem 5.7 Let Q(z) = % «TQz + q¥z be merely quasiconvez on R, Then, Q(x) s

merely pseudoconver on N if and only if g # 0.

Proof From Lemma 5.2, Q(x) is pseudocoﬁvex on R if and only if Qz +q s 0Vr e R
Since Q < 0, g <0 {see Theorem 4.4), the thesis follows. . : a
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By applying Theorem 4.2 and Theorem 5.6 to a 2 x 2 matrix we obtain the following

criteria of quasiconvexity and of pseudoéonﬁexity of a quadratic form.

o
Theorem 5.8 Consider the matriz ¢} = g . Then, the quadratic form Qo{z) =

%:z:TQa: is merely quasiconves on %i if and ilyfyif

) a<0, f<0, 750, (@8,7) #(0,0,0);

i) det@ = oy — * < 0. |

Purthermore, Qo(z) is pseudoconver on K2\ {(0,0)} if and only if in addition to i) a?;d

i) we have (e, B) # (0,0) and (8,7) # (0,0).
Example 5.1 Consider the matrices

a 0 0 g
A e , <0 B= B < 0
00 g 0

0 0 - I5} ‘
C = Y < 0; D= ya<0,8<0

0 ' g 0
The quadratic forms associated with all the matrices are GUASTCONVET on 2 but only the

quadratic forms associated with the matrices B and D are pseudoconver on ®3.\ {(0,0)}.

6 A special case

The necessary and sufficient conditions stated in the previous sections are, in general, not
easy to use for testing the quasiconvexity (pseudoconvexity) of a quadratic function. Nev-
ertheless, when Q(z) has a parﬁicular structure, it is possible to obtain a characterization

that is easy to test. In this section we shall consider the following class of functions:
Flz) = (%2 + ag) BTz + bo) + ' =. (6.11)

Theorem 6.1 Consider the function f in (6.11) and assume that the vectors a and b

are linearly independent. Then, f is merely quasiconvexr on a conver set S C R" with
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nonempty interior if and only if

i) there exist o, § € R such that ¢ = ca + Fb;

i) S C {reR:a"z+a+ 5> 0,07z + by +a <0} or
SC{ze® :d"v+a+B <0, z+b+a>0}

P:r‘obf We have f(z) = 227 Qx + ¢" = + go, where
Q = ab” +ba’, g = boa + ab + ¢, g = aobo.

The linear independence of ¢ and b implies that dim{Im@) = 2, where Im@ = {z =
paa -+ pob, iy, po € '§R}; consequently, dim(kerQ) = n 9. Taking into account that the
quadratic form 2z7Qz = 2a7zb¥z is not constant in sign, we necessarily have a unique
negative eigenvalue, Le., v..(@) = L. From Theorem 3.7, fis quasicomfex on S if and only
if there exists s € R" such that @s+g=0and S Cs+Tor 5 C s~T/. We have Qs+q =0
if and only if ¢ € Im@ or, equivalently, if and only if there exist o, Jé] 6‘ R such that ¢ =
aa-+ b, i.e., if and only if ;) holds. Furthermore, @s+q = (b7 s+by+a)a+(a"s+ag+5)b
" so that Qs + g = 0 if and only if 7s = —(by + ) and a”s = —(ap + B). By means of
simple calculations we have (z —$)7Q(z ~s) = 2(aTz + ag + B)(BTz + by + ) and thus
(z — 8)7Q(z — 8) <0 if and only if i) holds.

The proof is complete. , o

Remark 6.1 When o and b are linearly dependent, f is convez on R™ or it is concave
on ™. In this last case f turns out to be quasiconvez on & convex set S.if and only if
c=aa and § is ‘contained in one of the two half-spaces associated with the hyperplane

given by the set of critical points of the function.

Corollary 6.1 Consider the function f in (6.11) and assume that a and b are linearly
independent. Then, f is merely pseudoconvez on a conver set S < R™ with nonemply
interior if and only if

i) there exist a, § € R such that ¢ = aa + Gb;

i) S C {zx e R Trta+8>00c+b+a<0tu{se R afz4+ag+ B >
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GbTa:+bo+o¢<0} or
SC_i{meW":a:c-i—ao+ﬁ<Gqu:+bg+af>O}U{:1:C8%”:aT:v~%~ao+ﬁ <
0,07 % + by + o > 0}

Proof The thesis follows from Lemma 5.2, taking into account that

Vf(zo) = 0if and only if zp € {z € R" : ¥z +ao + 0 = 0,07z + by + o = 0}. 0

In order to characterize the quasmonvcmty of f on R, we shall state, firstly, the fol-

lowing lemma.

Lemma 6.1 Consider the matriz Q = ab® +ba®. Then, @ < 0tf d’nd only ifa > 0,b<0
ora<90,6>0. k '

Proof Obviously, if a > 0,b < O or a < 0,b 2 0, then @ < 0. Conversely, since the
thesis is trivial if @ = 0 or b = 0, we shall consider the case a # 0,b % 0. Assume by

contradiction, the existence of 4,7 such that a; >0, a; < 0 and consider the submatrix
Qaibf aib- + Gﬂbi . .
Qij = . CIfbiby # 0, by <0, azb; < 0imply that b, < 0,6; > 0,
: aib; + a;b; 2a;b;

respectively, so that a;b; + asb; > 0 and this is absurd. If b; = 0 and b; # 0 we have
0 ab; . } _ ,
Qi = “ | 4o that a;b; < 0 implies that b; > 0 while ab; < 0 implies that
ab;  2a;b;

b; < 0 and, once again, we get a contradiction. The case b; = 0, b; ;é 0 is analogous, so

that the case b; = 0, b; = 0 remains to be considered. Let k be such that by 0 and

- d-b +arh; b + asb; a;b 0
consider the submatrix o § ©I T = e s ayby, < O implies
200y akbj -+ &jbk‘ Z_akbk @ by,

that by < 0 while a;b, < 0 implies that by > 0 and this is absurd. Consequently, we have
a > 0ora < 0. For symmetric reasons, the components of b also have the same sign so

that, necessarily, a > 0, b <0 or a <0, b> 0. The thesis is achieved. O

Theorem 6.2 Consider the function f in (6.11) and assume that a and b are linearly
independent. Then, f is merely quasiconvez on R if and only if there exist o, F € R

such that ¢ = aa + 3b and one of the following conditions holds:
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UGEQ bSO, agwaa ﬁZ“’ao;

i) a<0, b=0, a=—b, 8 < —ap.

Proof From Theorem 4.4 we have @ = ab” + baT < 0, while from Lemma 6.1 we have

a>0,b<0o0ra<0,0b>0 The thesis folioWs from Theorem 6.1. 0

Corollary 6.2 C‘onsz’d?r the function f in (6.11) and assume that a and b are linearly
| independent. Then, f is merely pseudoconvex on R if and only if there exist o, € R
such that ¢ = aa + 0b and one of the following conditions holds:
i)az0, b<0anda< ——50, B> —ag ora < —by, > —ag;

#)a<0, b>0and a> ~by, B < ~agora> ~by, f<—a.

Proof Referﬁng; to Theorem 5.7, it is sufficient to note that bga + agb + ¢ # 0 if and only
ifag+B#0o0rby+as0. : | 0
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