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Abstract

We consider an incomplete market model with numeraire assets. Each household faces
an individual constraint on its participation in the asset market. In related literature, the
constraint is described by a function whose sole argument is the asset portfolio. On the contrary,
in our analysis the constraint depends not only on the asset portfolio, but also on asset and
good prices - hence the reference to endogenous (in contrast to exogenous) in the title. We also
analyze the case in which some household is excluded from the trade of some asset. Existence
results are provided using a homotopy argument.

JEL classification: D50; D52.
Keywords: General equilibrium; Restricted participation; Financial markets; Existence of equi-

libria.

1 Introduction

This paper provides existence results for a pure exchange general equilibrium model with incomplete
markets and endogenous restricted participation. We consider the same model presented in Carosi,
Gori and Villanacci (2009)1. Each household has only partial access, in a personalized manner to
the available set of assets. In related literature, the constraint is described by a function whose sole
argument is the asset portfolio. On the contrary, in our analysis the constraint depends not only
on the asset portfolio, but also on asset and good prices - hence the reference to endogenous (in
contrast to exogenous) in the title. Each economies is described by endowments of commodities,
utility functions, asset yield matrices, and restriction functions.

Assumptions on restriction functions are a natural generalizations to the endogenous setting of
those used in Cass, Siconolfi and Villanacci (2001) in the exogenous case. It turns out that, in both
mentioned frameworks, those assumptions imply that the admissible portfolio set has nonempty
interior - see Lemma 5 below. Therefore, they do not allow to cover the case in which some
household is excluded from the trade of some asset. Our proposed technique of proof can easily
accomodate that economically meaningful situation.

The paper is organized as follows. In Section 2, we present the setup of the model. In Section 3,
we show existence of equilibria in the case of restriction functions satisfying the proposed, standard
set of assumptions; an homotopy argument is used. Finally, in Section 4, we show existence in the
case of some household asset demand for some asset being forced to be zero.

2 The model

Our model is the by now very standard two-period, pure exchange economy with uncertainty and
both commodities and assets. Spot commodity markets open in the first and second periods, and
∗Dipartimento di Statistica e Matematica Applicata all’Economia, Università di Pisa, E-mail: lcarosi@ec.unipi.it
†Dipartimento di Matematica per le Decisioni, Universitá degli Studi di Firenze, E-mail: michele.gori@unifi.it.
‡Dipartimento di Matematica per le Decisioni, Universitá degli Studi di Firenze, E-mail: anto-

nio.villanacci@unifi.it.
Our research has been partially supported by M.I.U.R.

1See that paper for a discussion on restricted participation models.
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there are C ≥ 2 types of commodities traded at each spot, denoted by c ∈ C = {1, 2, ..., C}.
Asset markets open in just the first period, and there are A ≥ 1 (inside) assets traded, denoted
by a ∈ A = {1, 2, ..., A}. We will also denote spots by s ∈ S = {0, 1, ..., S}, S ≥ 1, where s = 0
corresponds to the first period, today, and s ≥ 1 the possible states of the world in the second
period, tomorrow. Finally, there are H ≥ 2 households, denoted by h ∈ H = {1, 2, ...,H}.

The time line for this model is as follows: today, households exchange commodities and assets,
and consumption takes place. Then, tomorrow, uncertainty is resolved, households make good on
their liabilities, and households again exchange and then consume commodities.

xch(s) is the consumption of commodity c in state s by household h, with parallel notation for the
endowment of commodities, ech(s) . Both consumption xh = (xch(s), c ∈ C, s ∈ S) and endowment
eh = (ech(s), c ∈ C, s ∈ S) are elements of RG++, where G = (S + 1)C is the total number of goods.
Household h’s preferences are represented by a utility function uh : RG++ → R. As in most of the
literature on smooth economies we will adopt throughout

Assumption u. For all h ∈ H,

u1. uh ∈ C2(RG++);

u2. uh is differentiably strictly increasing, that is, Duh (xh)� 0;

u3. uh is differentiably strictly quasi-concave, i.e.,

∆x 6= 0 and Duh (xh) ∆x = 0 ⇒ ∆xTD2uh (xh) ∆x < 0;

u4. uh has upper contour sets closed in the standard topology of RG, that is, for any x ∈ RG++,{
x ∈ RG++ : uh (x) ≥ uh (x)

}
is closed in the topology of RG .

The set of utility functions satisfying Assumption u is denoted by U . Define also U = UH .
We will also use the following standard notation: pc(s) is the price of commodity c at spot s and
p = (pc(s), c ∈ C, s ∈ S) is the corresponding commodity price vector; qa is the price of asset a and
q = (qa, a ∈ A) is the corresponding asset price vector; ya(s) is the yield in state s of asset a in
units of the numeraire commodity, which, for specificity, we designate to be C, and

Y =



y1(1) . . . ya(1) . . . yA(1)
...

...
...

y1(s) . . . ya(s) . . . yA(s)
...

...
...

y1(S) . . . ya(S) . . . yA(S)


is the corresponding yield matrix; y (s) = (ya(s), a ∈ A) is the vector of asset yields in state s; zah
is the quantity of asset a held by household h, zh = (zah, a ∈ A) is the corresponding asset portfolio
and z = (zh, h ∈ H) ∈ RAH .

Concerning the financial side of the economy, and consistently with our restricted participation
framework, we assume that

• there exists a given set of assets which, in number and kind, may even be sufficient for complete
markets,

• each household h has only partial access, in a personalized manner to the available set of
assets.

In other words, while there may be just a “few” or “many” assets, the market imperfection we con-
sider is not incompleteness of numbers of assets, but rather restrictions on households’ opportunities
for transacting in assets.
It greatly simplifies our analysis (but, for the reason just mentioned, is not without loss of generality)
to assume that

Assumption Y. rank Y = A ≤ S.
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Let Y be the set of S ×A matrices satisfying the above assumption.

There are J ≥ 1 potential participation constraints for each household. Let J = {1, ..., J} with
generic element j. Then, the restriction function for household h is

rh : RA × RG++ × RA → RJ

(zh, p, q) 7→ rh (zh, p, q) =
(
rjh (zh, p, q) , j ∈ J

)
For each nonempty subset Jh ⊆ J , denote its cardinality by Jh, and let

rJh

h : RA × RG++ × RA → RJh

(zh, p, q) 7→
(
rjh (zh, p, q) , j ∈ Jh

)
We now introduce assumptions on restriction functions.

Assumption r.

r1. For all h ∈ H, rh is C2(RA × RG++ × RA; RJ);

r2. For all h ∈ H, j ∈ J , (p, q) ∈ RG++ × RA, rjh is quasi-concave in zh;

r3. For all h ∈ H, (p, q) ∈ RG++ × RA, rh (0, p, q) ≥ 0;

r4. For all h ∈ H, (zh, p, q) ∈ RA × RG++ × RA, Jh ⊆ J such that Jh 6= ∅,

rJh

h (zh, p, q) = 0 ⇒ rank Dzh
rJh

h (zh, p, q) = Jh;

r5. For all a ∈ A, there exists h ∈ H such that, for every (zh, p, q) ∈ RA × RG++ × RA,

Dza
h
rh(zh, p, q) = 0.

LetR be the set of restriction functions satisfying Assumptions r1-r5 above, with generic element
r = (rh)Hh=1. An economy is E = (e, u, Y, r) ∈ RGH++ × U × Y ×R = E .
For given (p, q, E) ∈ RG++ × RA × E , household h ∈ H maximization problem is as follows.

Problem (Ph)

max
(xh,zh)

uh(xh) s.t.

p (0)xh (0) + qzh ≤ p (0) eh (0)

p (s)xh (s)− pC (s) y (s) zh ≤ p (s) eh (s) , s ∈ {1, ..., S}

rh(zh, p, q) ≥ 0

(1)

Observe that normalizations of spot by spot prices are not possible because of the dependence
of the restriction functions on (p, q). In fact nominal changes of prices may in general affect the
constraint set of some household maximization problems. Therefore the appropriate definition of
equilibrium is as follows.

Definition 1
(
(xh, zh)h∈H , p, q

)
∈
(
RG++ × RA

)H × RG++ × RA = Θ is an equilibrium for the
economy E ∈ E if for each h, (xh, zh) solves Problem (Ph) at (p, q, E) and (x, z) solves market
clearing conditions at e

H∑
h=1

(xh − eh) = 0

H∑
h=1

zh = 0
(2)

In the following, for every E ∈ E , we denote by Θ(E) ⊆ Θ the set of equilibria for the economy
E and by Θn(E) the set of normalized equilibria, that is,

Θn(E) =
{(

(xh, zh)h∈H , p, q
)
∈ Θ(E) : ∀s ∈ S, pC(s) = 1

}
.
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3 Existence of normalized equilibria

In this section we prove the following existence theorem.

Theorem 2 For every E ∈ E, Θn(E) 6= ∅.

We are going to prove such a result via the system of equations of Kuhn-Tucker conditions
associated with households maximizations problems, and market clearing conditions.

First of all note that in the considered model, S + 1 Walras’ laws do hold. If we define x\h(s) =

(xch (s) , c 6= C), x\h =
(
x
\
h(s), s ∈ S

)
and similarly e

\
h(s) = (ech (s) , c 6= C), e\h =

(
e
\
h(s), s ∈ S

)
,

then we can write the significant market clearing conditions at e as

H∑
h=1

(
x
\
h − e

\
h

)
= 0,

H∑
h=1

zh = 0.
(3)

Define also

p\(s) = (pc (s) : c 6= C) , p\ =
(
p\(s), s ∈ S

)
, p(s) =

(
p\(s), 1

)
, p = (p(s), s ∈ S) ,

and
Ξ = RGH++ × RAH × R(S+1)H

++ × RJH × RG−(S+1)
++ × RA,

with generic element
ξ =

(
x, z, λ, µ, p\, q

)
.

Let us consider now E ∈ E . It is immediate to prove that if(
(xh, zh)h∈H , p, q

)
∈ Θn(E)

then there exists (λh, µh)h∈H = (λ, µ) ∈ R(S+1)H
++ × RJH such that

ξ =
(

(xh, zh, λh, µh)h∈H , p
\, q
)

solves the system FE(ξ) = 0 where
FE : Ξ→ Rdim Ξ,

FE

(
x, z, λ, µ, p\, q

)
=

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s)

(h.2.0)
h∈H

−p (0) (xh (0)− eh (0))− qzh

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− eh (s)) + y (s) zh

(h.3.a)
h∈H,a∈A

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjhDza
h
rjh (zh, p, q)

(h.4.j)
h∈H,j∈J

min
{
µjh, r

j
h (zh, p, q)

}
(M.x)

H∑
h=1

(
x
\
h − e

\
h

)
(M.z)

H∑
h=1

zh



(4)

while if
ξ =

(
(xh, zh, λh, µh)h∈H , p

\, q
)

solves the system FE(ξ) = 0, then (
(xh, zh)h∈H , p, q

)
∈ Θn(E).

The above discussion implies that Theorem 2 is a consequence of the following result.
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Theorem 3 For every E ∈ E, there exists ξ ∈ Ξ such that FE(ξ) = 0.

We are going to prove Theorem 3 applying the following well known result2.

Theorem 4 Let M and N be two C2 boundaryless manifolds of the same dimension, y ∈ N and
F,G : M → N be continuous functions. Assume that G is C1 in an open neighborhood U of G−1 (y),
y is a regular value for G restricted to U , #G−1 (y) is odd and there exists a continuous homotopy
H : M × [0, 1]→ N from F to G such that H−1 (y) is compact. Then F−1 (y) 6= ∅.

We need also the following proposition.

Proposition 5 For every h ∈ H there exists a continuous function z̃h : RG++ × RA → RA such
that, for every (p, q) ∈ RG++ × RA, rh(z̃h(p, q), p, q)� 0.

Proof. Let us fix h ∈ H and define the correspondence ϕh : RG++ × RA ⇒ RA as

ϕh(p, q) =
{
zh ∈ RA : rh(zh, p, q)� 0

}
=

J⋂
j=1

{
zh ∈ RA : rjh(zh, p, q) > 0

}
.

By Assumption r2, for every j ∈ J , the set
{
zh ∈ RA : rjh(zh, p, q) > 0

}
is convex and then ϕh is

convex valued. We claim that, for every (p, q) ∈ RG++ × RA, ϕh(p, q) 6= ∅. In fact fix (p, q) ∈
RG++ ×RA. We know that rh(0, p, q) ≥ 0 and then there exist a partition

{
J 0
h ,J 1

h

}
of J such that

rjh(0, p, q) = 0, ∀j ∈ J 0
h ,

rjh(0, p, q) > 0, ∀j ∈ J 1
h .

By continuity of rJ
1
h

h there exists an open neighborhood V (0) ⊆ RA of 0 such that for every

zh ∈ V (0), rJ
1
h

h (zh, p, q) � 0. Moreover by Assumption r4 we know that rankDzh
r
J 0

h

h (0, p, q) = J0
h

and then we can find z∗h ∈ V (0) such that rJ
0
h

h (z∗h, p, q)� 0. Then rh(z∗h, p, q)� 0 and ϕh(p, q) 6= ∅.
Finally by Assumption r1 we have that, for every zh ∈ RA,

ϕ−1
h (zh) = {(p, q) ∈ RG++ × RA : zh ∈ ϕh(p, q)} = {(p, q) ∈ RG++ × RA : rh(zh, p, q)� 0}

is open in RG++×RA. Then the desired result follows from Proposition 1.5.1, page 29, in Florenzano
(2003).
Proof of Theorem 3. Let E = (e, u, Y, r) ∈ E be fixed. Then it is well known that there

exists a Pareto optimal allocation x∗ for u such that
H∑
h=1

x∗h =
H∑
h=1

eh. Moreover, there exists

(χ∗, γ∗) ∈ RH++ × RG++ such that (x∗, χ∗, γ∗) is the unique solution to the following system
χ∗1 − 1 = 0
χ∗hDuh (xh)− γ∗ = 0
(uh (xh)− uh (x∗h))h6=1 = 0

−
H∑
h=1

(xh − x∗h) = 0

(5)

Set
F (ξ) = FE(ξ), ∀ ξ ∈ Ξ,

and consider the system in the unknowns ξ = (x, λ, z, µ, p\, q) ∈ Ξ and τ ∈ [0, 1], given by

2See Theorem 57, p. 199, in Villanacci et al. (2002).
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

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s) = 0

(h.2.0)
h∈H

−p (0) (xh (0)− ((1− τ) eh(0) + τx∗h(0)))− qzh = 0

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− ((1− τ) eh(s) + τx∗h(s))) + y (s) zh = 0

(h.3.a)
h∈H,a∈A

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjh (1− τ)Dza
h
rjh ((1− τ) zh + τ z̃h(p, q), p, q) = 0

(h.4.j)
h∈H,j∈J

min
{
µjh, r

j
h ((1− τ) zh + τ z̃h(p, q), p, q)

}
= 0

(M.x)
H∑
h=1

(
x
\
h −

(
(1− τ) e\h + τx

∗\
h

))
= 0

(M.z)
H∑
h=1

zh = 0

(6)
where, for every h ∈ H, the function z̃h is defined in Proposition 5.

Define now
H : Ξ× [0, 1]→ Rdim Ξ

(ξ, τ) 7→ left hand side of system (6),

and
G : Ξ→ Rdim Ξ, ξ 7→ H (ξ, 1) .

Observe that
H (ξ, 0) = F (ξ) .

Let us now verify that Theorem 4 can be applied. F and G are defined in the same open subset of
Rdim Ξ, take values in Rdim Ξ (and those sets are C2 boundaryless manifolds of the same dimension)
and are continuous.

Of course H is a continuous homotopy from F to G. Moreover, Lemmas 6, 7 and 8 prove the
following needed results.

• G−1 (0) = {ξ∗};

• G is C1 in a neighborhood of ξ∗ and rankDξG (ξ∗) = dim Ξ;

• H−1 (0) is compact.

From Theorem 4, it then follows, as desired, that F−1(0) 6= ∅.

Lemma 6 G−1 (0) = {ξ∗} =
{

(x∗, z∗, λ∗, µ∗, p\∗, q∗)
}
∈ Ξ, where

x∗h = x∗h, λ∗h =
(
γ∗C (s)
χ∗h

, s ∈ S
)
, z∗h = 0, µ∗h = 0, ∀h ∈ H,

p∗\ =
(
γ∗c (s)
γ∗C (s)

, s ∈ S, c 6= C

)
, q∗ =

S∑
s=1

(
γ∗C (s)
γ∗C (0)

)
y (s) .
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Proof. G−1 (0) is the set of solutions of system (6) at τ = 1, that is, the set of solutions of the
system 

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s) = 0

(h.2.0)
h∈H

−p (0) (xh (0)− x∗h (0))− qzh = 0

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− x∗h (s)) + y (s) zh = 0

(h.3.a)
h∈H,a∈A

−λh (0) qa +
S∑
s=1

λh (s) ya(s) = 0

(h.4.j)
h∈H,j∈J

µjh = 0

(M.x)
H∑
h=1

(
x
\
h − x

∗\
h

)
= 0

(M.z)
H∑
h=1

zh = 0

(7)

Using the definition of ξ∗, it is easy to check that ξ∗ ∈ G−1 (0). Define now ξ̂ =
(
x̂, λ̂, ẑ, µ̂, p̂\, q̂

)
,

assume ξ̂ ∈ G−1(0) and prove ξ̂ = ξ∗.
Claim 1. µ̂ = µ∗. Obvious.
Claim 2. x̂ = x∗. Suppose by contradiction x̂ 6= x∗. Consider x̃ = 1

2 (x̂+ x∗). Of course it is

H∑
h=1

x̃h =
1
2

(
H∑
h=1

x̂h +
H∑
h=1

x∗h

)
=

H∑
h=1

x∗h. (8)

Since (x∗h, z
∗
h) is feasible for the maximization problem of the h-th household, whose first order

conditions are given by equations (h.1.s), (h.2.0), (h.2.s) and (h.3.a) in (7), it is uh(x̂h) ≥ uh(x∗h).
Moreover, from Assumption u3, we have

uh (x̃h) > min{uh (x∗h) , uh(x̂h)} = uh (x∗h) ∀h ∈ H. (9)

But (8) and (9) contradict the Pareto optimality of x∗.
Claim 3. λ̂ = λ∗. Since x̂ = x∗, from (h.1.s) in (7) we have in particular

λ̂h (s) = DxC
h (s)uh (x̂h) = DxC

h (s)uh (x∗h) = λ∗h (s) , ∀h ∈ H, s ∈ S.

Claim 4. p̂\ = p\∗. ¿From (h.1.s) in (7) and Claims 2 and 3,

p̂ (s) =
Dxh(s)uh (x̂h)

λ̂h (s)
=
Dxh(s)uh (x∗h)

λ∗h (s)
= p∗ (s) ∀s ∈ S.

Claim 5. ẑ = z∗. From (h.2.s) s ≥ 1 , in (7) and Claim 2, we have in particular,

Y ẑh = 0, ∀h ∈ H.

From Assumption Y, we get that for any h ∈ H, ẑh = 0 = z∗h.
Claim 6. q̂ = q∗. From (h.3.a) in (7) and Claims 1 and 3 we get

q̂ =
S∑
s=1

λ̂h (s)

λ̂h (0)
y (s) =

S∑
s=1

λ∗h (s)
λ∗h (0)

y (s) = q∗,

and the proof is completed.

Lemma 7 G is C1 in a neighborhood of ξ∗ and rankDξG (ξ∗) = dim Ξ.
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Proof. It is immediate to prove that in a suitable small neighborhood of ξ∗ we have is

G(ξ) =



(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s)

(h.2.0)
h∈H

−p (0) (xh (0)− x∗h (0))− qzh

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− x∗h (s)) + y (s) zh

(h.3.a)
h∈H,a∈A

−λh (0) qa +
S∑
s=1

λh (s) ya(s)

(h.4.j)
h∈H,j∈J

µjh

(M.x)
H∑
h=1

(
x
\
h − x

∗\
h

)
(M.z)

H∑
h=1

zh


and this is a C1 function. The computation of DξG (ξ∗) is described below

xh λh zh µh p\ q

(h.1) D2uh (x∗h) −Φ (p∗)T −Λ∗h
(h.2) −Φ (p∗)

[
−q∗
Y

]
(h.3)

[
−q∗
Y

]T
−λ∗h (0) I

(h.4) I

(M.x) Î
(M.z) I

where

Φ (p) =

 p1 (0) . . . pC−1 (0) 1
. . .

p1 (S) ... pC−1 (S) 1


(S+1)×G

(10)

Î =


I(C−1)×(C−1)0

. . .
I(C−1)×(C−1)0


[G−(S+1)]×G

(11)

and

Λ∗h =


λ∗h (0) IC−1

0
. . .

λ∗h (S) IC−1

0

 =
1
χ∗h


γ∗C (0) IC−1

0
. . .

γ∗C (S) IC−1

0

 =
1
χ∗h

Γ∗,

(12)
where Λ∗h and Γ∗ have G rows and G− (S + 1) columns and Γ∗ does not depend on h.

Then the above matrix has full rank if and only if the following does:

xh λh zh p\ q

(h.1) D2uh (x∗h) −Φ (p∗)T −Λ∗h
(h.2) −Φ (p∗)

[
−q∗
Y

]
(h.3)

[
−q∗
Y

]T
−λ∗h (0) I

(M.x) Î
(M.z) I
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Using a standard argument exploiting Assumption u3, the desired result follows3.

Lemma 8 H−1 (0) is compact.

Proof. We want to show that any sequence
(
ξ[k], τ [k]

)
k∈N included in H−1 (0) admits a convergent

subsequence inside that set.
Since

{
τ [k]
}
k∈N ⊆ [0, 1], up to a subsequence, we can assume τ [k] → τ̂ ∈ [0, 1]. Consequently,

defined
e

[k]
h =

(
1− τ [k]

)
eh + τ [k]x∗h, êh = (1− τ̂) eh + τ̂x∗h,

e[k] =
(
1− τ [k]

)
e+ τ [k]x∗, ê = (1− τ̂) e+ τ̂x∗,

we have e[k]
h , êh ∈ RG++, e[k], ê ∈ RGH++ and

e
[k]
h → êh, e[k] → ê as k →∞.

Claim 1.
(
x[k]
)
k∈N admits a subsequence converging to x̂ ∈ RGH++ .

It suffices to show that
(
x[k]
)
k∈N is contained in a compact subset of RGH included in RGH++ . Since{

x[k]
}
k∈N ⊆ RGH++ is bounded from below from zero. Observing that Walras’ law holds also for the

homotopy system, we have

H∑
h=1

(
x

[k]
h −

((
1− τ [k]

)
eh + τ [k]x∗h

))
= 0

and then for any h′ ∈ H

x
[k]
h′ =

H∑
h=1

((
1− τ [k]

)
e

[k]
h + τ [k]x∗h

)
−
∑
h6=h′

x
[k]
h .

Therefore, since
(
e

[k]
h

)
k∈N

converges and
(
x[k]
)
k∈N is bounded from below, it is bounded from above

as well. We are left with showing the closedness. Remember that equations (h.1.s), (h.2.0), (h.2.s),
(h.3.a) and (h.4.j) in (6) say that for all k ∈ N,

(
x

[k]
h , z

[k]
h

)
solves the problem

max
(xh,zh)

uh(xh) s.t.

−p[k] (0)
(
xh (0)− (1− τ [k])eh (0)− τ [k]x∗h(0)

)
− q[k]zh = 0,

−p[k] (s)
(
xh (s)− (1− τ [k])eh (s)− τ [k]x∗h(s)

)
+ y (s) zh = 0, s ∈ {1, ..., S}

rh
(
(1− τ [k])zh + τ [k]z̃h(p[k], q[k]), p[k], q[k]

)
≥ 0.

(13)

From Assumption u3 and the properties of z̃h it is simple to prove that, for all k ∈ N, we have that
the vector

(
e

[k]
h , 0

)
belongs to the constraint set described in (13), and therefore by definition of

x
[k]
h , we have that

uh

(
x

[k]
h

)
≥ uh

(
e

[k]
h

)
≥ min
eh∈

n
e
[k]
h

o
k∈N
∪{beh}

uh (eh) = uh, ∀k ∈ N, h ∈ H,

where the minimum is well defined because {e[k]
h }k∈N∪{êh} is a compact set. Therefore,

{
x[k]
}
k∈N ⊆{

xh ∈ RG++ : uh (xh) ≥ uh
}

, which is a closed set in RG and contained in RG++ from Assumption u4.
Therefore,

{
x[k]
}
k∈N is contained in a closed set, too. We can assume then, up to a subsequence

that x[k] → x̂ ∈ RGH++ as k →∞.

Claim 2.
(
λ[k]
)
k∈N admits a subsequence converging to λ̂ ∈ R(S+1)H

++ .
Since p[k]C(s) = 1, from (h.1.s) in (6), we have

DxC
h (s)uh

(
x

[k]
h

)
= λ

[k]
h (s), ∀h ∈ H, s ∈ S.

3See Villanacci et al. (2002), Lemma 18, p. 319.
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Letting k →∞ in both sides, we get

lim
k→∞

λ
[k]
h (s) = lim

k→∞
DxC

h (s)uh

(
x

[k]
h

)
= DxC

h (s)uh (x̂h) = λ̂h(s) > 0

where the last strict inequality comes from Assumption u2.

Claim 3.
(
p\[k]

)
k∈N admits a subsequence converging to p̂\ ∈ RG−(S+1)

++ .

Again from (h.1.s) in (6), D
x
\
h(s)

uh

(
x

[k]
h

)
− λ[k]

h (s)p\(s) = 0. Therefore, we get

lim
k→∞

p\[k](s) = lim
k→∞

D
x
\
h(s)

uh

(
x

[k]
h

)
λ

[k]
h (s)

=
D
x
\
h(s)

uh (x̂h)

λ̂h(s)
= p̂\ > 0

where again the last strict inequality comes from Assumption u2.

Claim 4.
(
z[k]
)∞
k=1

admits a subsequence converging to ẑ ∈ RAH .

From equation (h.2.s) s ≥ 1 in (6), and using the fact that Y has full rank A and the previous
claims, we also get that

(
z[k]
)∞
k=1

converges.

Claim 5.
(
q[k]
)∞
k=1

admits a subsequence converging to q̂ ∈ RA.
From the previous claims we know that, up to a subsequence,

(
z[k], p\[k]

)
converges to

(
ẑ, p̂\

)
. Let

us fix now a ∈ A and prove qa[k] → q̂a. From Assumption r5 there exists h ∈ H such that

(zh, p, q) ∈ RA × RG++ × RA ⇒ Dza
h
rh(zh, p, q) = 0

and therefore for every k we get

Dza
h
rh

(
(1− τ [k])z[k]

h + τ [k]z̃h(p[k], q[k]), p[k], q[k]
)

= 0

Then, (h.3.a) in (6) can be written as

−λ[k]
h (0) qa[k] +

S∑
s=1

λ
[k]
h (s) ya(s) = 0

and then

qa[k] =

S∑
s=1

λ
[k]
h (s)y(s)

λ
[k]
h (0)

→

S∑
s=1

λ̂h(s)y(s)

λ̂h(0)
= q̂a.

Claim 6.
(
µ[k]
)
k∈N admits a subsequence converging to µ̂ ∈ RJH .

Fix h ∈ H and let
{
J 0
h ,J 1

h

}
be a partition of the set of indexes J such that

J 0
h =

{
j ∈ J : rjh

(
(1− τ̂) ẑh + τ̂ z̃h(p̂, q̂), p̂, q̂

)
= 0
}

and
J 1
h =

{
j ∈ J : rjh

(
(1− τ̂) ẑh + τ̂ z̃h(p̂, q̂), p̂, q̂

)
> 0
}

with cardinality J0
h and J1

h, respectively. If j ∈ J 1
h , if k is large enough it is

rjh

((
1− τ [k]

)
z

[k]
h + τ [k]z̃h(p[k], q[k]), p[k], q[k]

)
> 0

which implies µj,[k]
h = 0. Then µ

j,[k]
h → 0 as k →∞, for all j ∈ J 1

h .
From Assumption r4,

rank
(
Dzh

r
J 0

h

h

(
(1− τ̂) ẑh + τ̂ z̃h(p̂, q̂), p̂, q̂

))
= J0

h.
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Then
∣∣detM

(
ẑh, p̂

\, q̂, τ̂
)∣∣ > 0 , where M

(
ẑh, p̂

\, q̂, τ̂
)

is a well chosen square J0
h-dimensional sub-

matrix of
Dzh

r
J 0

h

h

(
(1− τ̂) ẑh + τ̂ z̃h(p̂, q̂), p̂, q̂

)
.

Let M
(
z

[k]
h , p\[k], q[k], τ [k]

)
be the square sub-matrix of

Dzh
r
J 0

h

h

((
1− τ [k]

)
z

[k]
h + τ [k]z̃h(p[k], q[k]), p[k], q[k]

)
(14)

whose columns are the same than the ones of M
(
ẑh, p̂

\, q̂, τ̂
)
. Of course

M
(
z

[k]
h , p\[k], q[k], τ [k]

)
→M

(
ẑh, p̂

\, q̂, τ̂
)

;

if k is large enough we have also
∣∣∣detM

(
z

[k]
h , p\[k], q[k], τ [k]

)∣∣∣ > 0 and then

M−1
(
z

[k]
h , p\[k], q[k], τ [k]

)
→M−1

(
ẑh, p̂

\, q̂, τ̂
)
.

Making the needed permutations of rows and columns of (14) in order to haveM
(
z

[k]
h , p\[k], q[k], τ [k]

)
in the top-left corner we get


J0
h A− J0

h

J0
h M

(
z

[k]
h , p\[k], q[k], τ [k]

)
M12

(
z

[k]
h , p\[k], q[k], τ [k]

)
J − J0

h M21

(
z

[k]
h , p\[k], q[k], τ [k]

)
M22

(
z

[k]
h , p\[k], q[k], τ [k]

)
Performing analogous permutation of the components of µh and η =

(
−λh

[−q
Y

])
in order to have

the equalities in equations (h.3.a), of (6) still satisfied we get:

[
µ

0,[k]
h µ

1,[k]
h

] (
1− τ [k]

) M
(
z

[k]
h , p\[k], q[k], τ [k]

)
M12

(
z

[k]
h , p\[k], q[k], τ [k]

)
M21

(
z

[k]
h , p\[k], q[k], τ [k]

)
M22

(
z

[k]
h , p\[k], q[k], τ [k]

)  =
[
ηI,[k] ηII,[k]

]
where µ0,[k]

h ∈ RJ0
h , µ

1,[k]
h ∈ RJ−J0

h , ηI,[k] ∈ RJ0
h , ηII,[k] ∈ RA−J0

h .

Since µ1,[k]
h = 0, we have in particular

µ
0,[k]
h

(
1− τ [k]

) [
M
(
z

[k]
h , p\[k], q[k], τ [k]

)]
= ηI,[k]

and then
µ

0,[k]
h = ηI,[k]

[
M
(
z

[k]
h , p\[k], q[k], τ [k]

)]−1

which implies µ0,[k]
h → µ̂0

h as k →∞ because the left hand side does converge.

4 Existence when some households cannot trade some assets

Let us consider an economy E ∈ E . For every h ∈ H let us define the set Ah ⊆ A such that, for
every a ∈ Ah,

Dza
h
rh(zh, p, q) = 0, ∀ (zh, p, q) ∈ RA × RG++ × RA.

Of course it may be Ah = ∅ but, because of Assumption r5, surely we have⋃
h∈H

Ah = A.

Let us define then the set B(E) ⊆
(
2A
)H as follows.4 Given B = (Bh)h∈H ∈

(
2A
)H we have

B ∈ B(E) if
4We denote by 2A the power set of A.
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1. for every h ∈ H, Bh ⊆ Ah,

2. for every a ∈ A, there exists h ∈ H such that a ∈ Ah \ Bh.

Moreover, for every h ∈ H, let Bh = #(Bh) and B =
∑
h∈HBh.

For given (p, q, E) ∈ RG++ × RA × E and B ∈ B(E), household h ∈ H maximization problem is
now as follows.

Problem (Ph2)

max
(xh,zh)

uh(xh) s.t.

p (0)xh (0) + qzh ≤ p (0) eh (0)

p (s)xh (s)− pC (s) y (s) zh ≤ p (s) eh (s) , s ∈ {1, ..., S}

rh(zh, p, q) ≥ 0

zah = 0, a ∈ Bh

(15)

Moreover the definition of equilibrium is as follows.

Definition 9
(
(xh, zh)h∈H , p, q

)
∈
(
RG++ × RA

)H × RG++ × RA = Θ is an equilibrium for the
economy E ∈ E and for B ∈ B(E) if for each h, (xh, zh) solves Problem (Ph2) at (p, q, E) and
(x, z) solves market clearing conditions at e

H∑
h=1

(xh − eh) = 0

H∑
h=1

zh = 0
(16)

In the following, for every E ∈ E and B ∈ B(E) we denote by Θ̃(E,B) ⊆ Θ the set of equilibria for
the economy E and for B ∈ B(E) by Θ̃n(E,B) the set of normalized equilibria, that is,

Θ̃n(E,B) =
{(

(xh, zh)h∈H , p, q
)
∈ Θ̃(E,B) : ∀s ∈ S, pC(s) = 1

}
.

The following existence theorem hold.

Theorem 10 For every E ∈ E and for every B ∈ B(E), Θ̃n(E,B) 6= ∅.

The proof of Theorem 10 follows the same lines that the one of Theorem 2. In fact for this new
kind of equilibria S + 1 Walras’ laws hold too and then the significant market clearing conditions
are given by (3).

Consider then E ∈ E and B ∈ B(E) as fixed and define

Ξ̃ = RGH++ × RAH × R(S+1)H
++ × RJH × RB × RG−(S+1)

++ × RA

with generic element

ξ̃ =
(

(xh, zh, λh, µh, βh)Hh=1 , p
\, q
)

=
(
x, z, λ, µ, β, p\, q

)
,

where, for every h ∈ H, βh ∈ RBh .
It is immediate to prove that if(

(xh, zh)Hh=1 , p, q
)
∈ Θ̃n(E,B)

then there exists (λ, µ, β) ∈ R(S+1)H
++ × RJH × RB such that

ξ̃ =
(

(xh, zh, λh, µh, βh)Hh=1 , p
\, q
)

12



solves the system F̃(E,B)(ξ̃) = 0 where

F̃(E,B) : Ξ̃→ Rdim Ξ,

F̃(E,B)

(
x, z, λ, µ, β, p\, q

)
=

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s)

(h.2.0)
h∈H

−p (0) (xh (0)− eh (0))− qzh

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− eh (s)) + y (s) zh

(h.3.a1)
h∈H,a∈Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjhDza
h
rjh (zh, p, q) + βah

(h.3.a2)
h∈H,a∈A\Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjhDza
h
rjh (zh, p, q)

(h.4.j)
h∈H,j∈J

min
{
µjh, r

j
h (zh, p, q)

}
(h.5.a)
h∈H,a∈Bh

zah = 0

(M.x)
H∑
h=1

(
x
\
h − e

\
h

)
(M.z)

H∑
h=1

zh



(17)

while if
ξ̃ =

(
(xh, zh, λh, µh, βh)Hh=1 , p

\, q
)

solves the system F̃(E,B)(ξ̃) = 0, then(
(xh, zh)Hh=1 , p, q

)
∈ Θ̃n(E,B).

Then Theorem 10 is a consequence of the following result.

Theorem 11 For every E ∈ E and B ∈ B(E), there exists ξ̃ ∈ Ξ̃ such that F̃(E,B)(ξ̃) = 0.

Proof of Theorem 11. Let E = (e, u, Y, r) ∈ E and B ∈ B(E) be fixed. Then it is well known

that there exists a Pareto optimal allocation x∗ for u such that
H∑
h=1

x∗h =
H∑
h=1

eh. Moreover, there

exists (χ∗, γ∗) ∈ RH++ × RG++ such that (x∗, χ∗, γ∗) is the unique solution to the following system
χ∗1 − 1 = 0
χ∗hDuh (xh)− γ∗ = 0
(uh (xh)− uh (x∗h))h6=1 = 0

−
H∑
h=1

xh +
H∑
h=1

x∗h = 0

(18)

Define
F (ξ̃) = F̃(E,B)(ξ̃) ∀ ξ̃ ∈ Ξ̃
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and consider the system in the unknowns ξ = (x, λ, z, µ, β, p\, q) ∈ Ξ̃ and τ ∈ [0, 1] given by

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s) = 0

(h.2.0)
h∈H

−p (0) (xh (0)− ((1− τ) eh(0) + τx∗h(0)))− qzh = 0

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− ((1− τ) eh(s) + τx∗h(s))) + y (s) zh = 0

(h.3.a1)
h∈H,a∈Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjh(1− τ)Dza
h
rjh ((1− τ) zh + τ z̃h(p, q), p, q) + βah = 0

(h.3.a2)
h∈H,a∈A\Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) +
J∑
j=1

µjh(1− τ)Dza
h
rjh ((1− τ) zh + τ z̃h(p, q), p, q) = 0

(h.4.j)
h∈H,j∈J

min
{
µjh, r

j
h ((1− τ) zh + τ z̃h(p, q), p, q)

}
= 0

(h.5.a)
h∈H,a∈Bh

zah = 0

(M.x)
H∑
h=1

(
x
\
h − e

\
h

)
= 0

(M.z)
H∑
h=1

zh = 0

(19)
where, for every h ∈ H, the function z̃h is defined in Proposition 5.

Define now
H : Ξ̃× [0, 1]→ Rdim eΞ(

ξ̃, τ
)
7→ left hand side of system (19),

and
G : Ξ̃→ Rdim eΞ, ξ 7→ H

(
ξ̃, 1
)
.

Observe that
H
(
ξ̃, 0
)

= F
(
ξ̃
)
.

Let us now verify that Theorem 4 can be applied. F and G are defined in the same open subset of
Rdim eΞ, take values in Rdim eΞ (and those sets are C2 boundaryless manifolds of the same dimension)
and are continuous.

Of course H is a continuous homotopy from F to G. Moreover, Lemmas 12, 13 and 14 prove
the following needed results.

• G−1 (0) =
{
ξ̃∗
}

;

• G is C1 in a neighborhood of ξ̃∗ and rankDeξG
(
ξ̃∗
)

= dim Ξ̃;

• H−1 (0) is compact.

From Theorem 4, it then follows, as desired, that F−1(0) 6= ∅.

Lemma 12 G−1 (0) =
{
ξ̃∗
}

=
{

(x∗, z∗, λ∗, µ∗, β∗, p\∗, q∗)
}
∈ Ξ̃, where

x∗h = x∗h, λ∗h =
(
γ∗C (s)
χ∗h

, s ∈ S
)
, z∗h = 0, µ∗h = 0, β∗h = 0 ∀h ∈ H,

p∗\ =
(
γ∗c (s)
γ∗C (s)

, s ∈ S, c 6= C

)
, q∗ =

S∑
s=1

(
γ∗C (s)
γ∗C (0)

)
y (s) .
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Proof. G−1 (0) is the set of solutions of system (19) at τ = 1, that is, the set of solution of the
system 

(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s) = 0

(h.2.0)
h∈H

−p (0) (xh (0)− x∗h(0))− qzh = 0

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− x∗h(s)) + y (s) zh = 0

(h.3.a1)
h∈H,a∈Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) + βah = 0

(h.3.a2)
h∈H,a∈A\Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) = 0

(h.4.j)
h∈H,j∈J

µjh = 0

(h.5.a)
h∈H,a∈Bh

zah = 0

(M.x)
H∑
h=1

(
x
\
h − e

\
h

)
= 0

(M.z)
H∑
h=1

zh = 0

(20)

Using the definition of ξ̃∗, it is easy to check that ξ̃∗ ∈ G−1 (0). Define now ξ̂ =
(
x̂, λ̂, ẑ, µ̂, β̂, p̂\, q̂

)
and assume ξ̂ ∈ G−1(0): we prove ξ̂ = ξ̃∗.
Claim 1. µ̂ = µ∗. Obvious.
Claim 2. x̂ = x∗. Suppose by contradiction x̂ 6= x∗. Consider x̃ = 1

2 (x̂+ x∗). Of course it is

H∑
h=1

x̃h =
1
2

(
H∑
h=1

x̂h +
H∑
h=1

x∗h

)
=

H∑
h=1

x∗h. (21)

Since (x∗h, z
∗
h) is feasible for the maximization problem of the h-th household, whose first order

conditions are given by equations (h.1.s), (h.2.0), (h.2.s), (h.3.a1), (h.3.a2) and (h.5.a) in (20), it
is uh(x̂h) ≥ uh(x∗h). Moreover, from Assumption u3, we have

uh (x̃h) > min{uh (x∗h) , uh(x̂h)} = uh (x∗h) ∀h ∈ H. (22)

But (21) and (22) contradict the Pareto optimality of x∗.
Claim 3. λ̂ = λ∗. Since x̂ = x∗, from (h.1.s) in (20) we have in particular

λ̂h (s) = DxC
h (s)uh (x̂h) = DxC

h (s)uh (x∗h) = λ∗h (s) , ∀h ∈ H, s ∈ S.

Claim 4. p̂\ = p\∗. From (h.1.s) in (20) and Claims 2 and 3,

p̂ (s) =
Dxh(s)uh (x̂h)

λ̂h (s)
=
Dxh(s)uh (x∗h)

λ∗h (s)
= p∗ (s) ∀s ∈ S.

Claim 5. ẑ = z∗. From (h.2.s) s ≥ 1, in (20) and Claim 2, we have in particular,

Y ẑh = 0, ∀h ∈ H.

From Assumption Y, we get that for any h ∈ H, ẑh = 0 = z∗h.
Claim 6. q̂ = q∗. From the assumption on B and (h.3.a2) in (20), for every a ∈ A, there exists
h ∈ H

q̂a =
S∑
s=1

λ̂h (s)

λ̂h (0)
ya (s) =

S∑
s=1

λ∗h (s)
λ∗h (0)

ya (s) = qa∗,

Claim 7. β̂ = β∗. From (h.3.a1) in (20) and Claims 1 and 6 we get the claim and the proof is now
completed.

Lemma 13 G is C1 in a neighborhood of ξ̃∗ and rankDeξG
(
ξ̃∗
)

= dim Ξ̃.
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Proof. It is immediate to prove that in a suitable small neighborhood of ξ̃∗ we have

G(ξ̃) =



(h.1.s)
h∈H,s∈S

Dxh(s)uh (xh)− λh (s) p (s)

(h.2.0)
h∈H

−p (0) (xh (0)− x∗h(0))− qzh

(h.2.s)
h∈H,s∈S\{0}

−p (s) (xh (s)− x∗h(s)) + y (s) zh

(h.3.a1)
h∈H,a∈Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s) + βah

(h.3.a2)
h∈H,a∈A\Bh

−λh (0) qa +
S∑
s=1

λh (s) ya(s)

(h.4.j)
h∈H,j∈J

µjh

(h.5.a)
h∈H,a∈Bh

zah

(M.x)
H∑
h=1

(
x
\
h − e

\
h

)
(M.z)

H∑
h=1

zh


and this is a C1 function. The computation of DeξG

(
ξ̃∗
)

is described below

xh λh zh µh βh p\ q

(h.1) D2uh (x∗h) −Φ (p∗)T −Λ∗h
(h.2) −Φ (p∗)

[
−q∗
Y

]
(h.3)

[
−q∗
Y

]T
ĨBh

−λ∗h (0) I

(h.4) I

(h.5) ĨTBh

(M.x) Î
(M.z) I

where Φ (p), Î, Λ∗h are defined in (10), (11) and (12) respectively, and if Bh = {b1, . . . , bBh
}, with

b1 < . . . < bBh
, then

ĨBh
= (γi,j)

j=1,...,Bh

i=1,...,A where γi,j =
{

1 if i = bj
0 if i 6= bj

The above matrix has full rank if and only if the following does:

M∗ =

xh λh zh βh p\ q

(h.1) D2uh (x∗h) −Φ (p∗)T −Λ∗h
(h.2) −Φ (p∗)

[
−q∗
Y

]
(h.3)

[
−q∗
Y

]T
ĨBh

−λ∗h (0) I

(h.5) ĨTBh

(M.x) Î
(M.z) I

(23)

We are going to use a simple modification of the standard argument. Consider a vector

∆ξ̃ =
(

(∆xh,∆zh,∆λh,∆µh,∆βh)Hh=1 ,∆p
\,∆q

)
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and prove that if M∆ξ̃ = 0 then ∆ξ̃ = 0. Let us explicitly write M∆ξ̃ = 0 as follows:

(h.1) D2uh (x∗h) ∆xh − Φ (p∗)T ∆λh − Λ∗h∆p\ = 0
(h.2) −Φ (p∗) ∆xh +

[
−q∗
Y

]
∆zh = 0

(h.3)
[
−q∗
Y

]T
∆λh + ĨBh

∆βh − λ∗h (0) ∆q = 0

(h.5) ĨTBh
∆zh = 0

(M.x)
H∑
h=1

∆x\h = 0

(M.z)
H∑
h=1

∆zh = 0

(24)

and remember that, from (20) we have in particular{
(h.1) Duh (x∗h)− λ∗hΦ (p∗) = 0

(h.3)
[
−q∗
Y

]T
λ∗h = 0

(25)

First we claim that if, for every h ∈ H, ∆xh = 0 then ∆ξ̃ = 0. In fact if, for every h ∈ H, ∆xh = 0
then, from (h.2) in (24) we have [

−q∗

Y

]
∆zh = 0,

and from Assumption Y we have ∆zh = 0. From (h.1) in (24) it follows ∆λh = 0 that implies
∆p\ = 0 as well. From (h.3) in (24) we obtain the equality

ĨBh
∆βh = λ∗h (0) ∆q.

We know that, for every a ∈ A, there exists h ∈ H such that a ∈ Ah \ Bh. Then we have that, for
every a ∈ A, ∆qa = 0 that is ∆q = 0. As a consequence we have that, for every h ∈ H, ∆βh = 0
too and the proof of the claim is complete.

Let us assume now there exists h′ ∈ H such that ∆x′h 6= 0 and prove that this leads to a
contradiction. First of all let us show that, for every h ∈ H, Duh(x∗h)∆xh = 0. In fact multiplying
(h.1) in (25) by ∆xh, for every h ∈ H, we obtain

Duh (x∗h) ∆xh = λ∗hΦ (p∗) ∆xh.

From (h.2) in (24) we have

Duh (x∗h) ∆xh = λ∗h

[
−q∗

Y

]
∆zh

and the right hand side is zero because of (h.3) in (25). The claim then follows and since ∆xh′ 6= 0
and Assumption u3 holds, we have in particular that

H∑
h=1

χ∗h∆xhD2uh(x∗h)∆xh < 0. (26)

We end the proof of the lemma showing that it has also to be

H∑
h=1

χ∗h∆xhD2uh(x∗h)∆xh = 0, (27)

and then finding a contradiction.
From (h.1) in (24) we have

χ∗h∆xhD2uh(x∗h)∆xh = χ∗h∆xhΦ (p∗)T ∆λh + χ∗h∆xhΛ∗h∆p\.

Moreover from (h.2) and (h.3) in (24) we have

χ∗h∆xhΦ (p∗)T ∆λh = χ∗h∆zh

[
−q∗

Y

]T
∆λh = ∆zh

(
γ∗C(0)∆q − χ∗hĨBh

∆βh
)
.

17



and by definition of Λ∗h and Γ∗ we have

χ∗h∆xhΛ∗h∆p\ = ∆xhΓ∗∆p\.

Then

H∑
h=1

χ∗h∆xhD2uh(x∗h)∆xh =

(
H∑
h=1

∆zh

)
γ∗C(0)∆q −

H∑
h=1

χ∗h∆zhĨBh
∆βh +

(
H∑
h=1

∆xh

)
Γ∗∆p\.

We are going to prove (27) showing then the right hand side of the above equality is zero. Of course
by (M.z) in (24) (

H∑
h=1

∆zh

)
γ∗C(0)∆q = 0.

Moreover we have (
H∑
h=1

∆xh

)
Γ∗∆p\ =

(
H∑
h=1

∆x\h,
H∑
h=1

∆xCh

)
Γ∗∆p\ = 0

using (M.x) in (24) and the properties of Γ∗. Finally from (h.5) in (24) we have

H∑
h=1

χ∗h∆zhĨBh
∆βh = 0

and the proof is completed.

Lemma 14 H−1 (0) is compact.

Proof. We want to show that any sequence
(
ξ[k], τ [k]

)
k∈N included in H−1 (0) admits a convergent

subsequence inside that set.
Since

{
τ [k]
}
k∈N ⊆ [0, 1], up to a subsequence, we can assume τ [k] → τ̂ ∈ [0, 1]. Consequently,

defined
e

[k]
h =

(
1− τ [k]

)
eh + τ [k]x∗h, êh = (1− τ̂) eh + τ̂x∗h,

e[k] =
(
1− τ [k]

)
e+ τ [k]x∗, ê = (1− τ̂) e+ τ̂x∗,

we have e[k]
h , êh ∈ RG++, e[k], ê ∈ RGH++ and

e
[k]
h → êh, e[k] → ê as k →∞.

Claim 1.
(
x[k]
)
k∈N admits a subsequence converging to x̂ ∈ RGH++ .

It suffices to show that
(
x[k]
)
k∈N is contained in a compact subset of RGH included in RGH++ . Since{

x[k]
}
k∈N ⊆ RGH++ is bounded from below from zero. Observing that Walras’ law holds also for the

homotopy system, we have

H∑
h=1

(
x

[k]
h −

((
1− τ [k]

)
eh + τ [k]x∗h

))
= 0

and then for any h′ ∈ H

x
[k]
h′ =

H∑
h=1

((
1− τ [k]

)
e

[k]
h + τ [k]x∗h

)
−
∑
h6=h′

x
[k]
h .

Therefore, since
(
e

[k]
h

)
k∈N

converges and
(
x[k]
)
k∈N is bounded from below, it is bounded from above

as well. We are left with showing the closedness. Remember that equations (h.1.s), (h.2.0), (h.2.s),
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(h.3.a1), (h.3.a2), (h.4.j) and (h.5.a) in (19) say that for all k ∈ N,
(
x

[k]
h , z

[k]
h

)
solves the problem

max
(xh,zh)

uh(xh) s.t.

−p[k] (0)
(
xh (0)− (1− τ [k])eh (0)− τ [k]x∗h(0)

)
− q[k]zh = 0,

−p[k] (s)
(
xh (s)− (1− τ [k])eh (s)− τ [k]x∗h(s)

)
+ y (s) zh = 0, s = 1, ..., S

rh
(
(1− τ [k])zh + τ [k]z̃h(p[k], q[k]), p[k], q[k]

)
≥ 0

zah = 0, a ∈ Bh

(28)

From Assumption u3 and the properties of z̃h it is simple to prove that, for all k ∈ N, we have that
the vector

(
e

[k]
h , 0

)
belongs to the constraint defined by (28), and therefore by definition of x[k]

h , we
have that

uh

(
x

[k]
h

)
≥ uh

(
e

[k]
h

)
≥ min
eh∈

n
e
[k]
h

o
k∈N
∪{beh}

uh (eh) = uh, ∀k ∈ N, h ∈ H,

where the minimum is well defined because {e[k]
h }k∈N∪{êh} is a compact set. Therefore,

{
x[k]
}
k∈N ⊆{

xh ∈ RG++ : uh (xh) ≥ uh
}

, which is a closed set in RG and contained in RG++ from Assumption u4.
Therefore,

{
x[k]
}
k∈N is contained in a closed set, too. We can assume then, up to a subsequence

that x[k] → x̂ ∈ RGH++ as k →∞.

Claim 2.
(
λ[k]
)
k∈N admits a subsequence converging to λ̂ ∈ R(S+1)H

++ .
See Claim 2 of the proof of Lemma 8.

Claim 3.
(
p\[k]

)
k∈N admits a subsequence converging to p̂\ ∈ RG−(S+1)

++ .
See Claim 3 of the proof of Lemma 8.

Claim 4.
(
z[k]
)∞
k=1

admits a subsequence converging to ẑ ∈ RAH .
See Claim 4 of the proof of Lemma 8.

Claim 5.
(
q[k]
)∞
k=1

admits a subsequence converging to q̂ ∈ RA.
From the previous claims we know that, up to a subsequence,

(
z[k], p\[k]

)
converges to

(
ẑ, p̂\

)
. Let

us fix now a ∈ A and prove qa[k] → q̂a. From Assumption r5 and the properties of B we know there
exists h ∈ H such that a ∈ Ah \ Bh and therefore, for every k, we get

Dza
h
rh

(
(1− τ [k])z[k]

h + τ [k]z̃h(p[k], q[k]), p[k], q[k]
)

= 0

Then, (h.3.a2) in (19) can be written as

−λ[k]
h (0) qa[k] +

S∑
s=1

λ
[k]
h (s) ya(s) = 0

and then

qa[k] =

S∑
s=1

λ
[k]
h (s)y(s)

λ
[k]
h (0)

→

S∑
s=1

λ̂h(s)y(s)

λ̂h(0)
= q̂a.

Claim 6.
(
µ[k]
)
k∈N admits a subsequence converging to µ̂ ∈ RJH .

See Claim 6 of the proof of Lemma 8.

Claim 7.
(
β[k]
)
k∈N admits a subsequence converging to β̂ ∈ RB.

It immediately follows from (h.3.a1) in (19) and the already proved claims. The proof of the lemma
is then completed.
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