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Abstract

In the context of expected utility maximization for utilities defined on the whole real line, we
define a new class of admissible strategies in terms of dynamic bounds on losses under the historical
measure P. More precisely, the loss control is given by a P-martingale which is compatible with
the preferences of the investor. The main result is the Ansel-Stricker-type Lemma 3.2 which shows
that the admissible strategies are supermartingales under all sigma-martingale measures Q with finite
relative entropy, therefore allowing for a duality theory for the optimization problem.
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1 Introduction

We consider the ”classic” frictionless model for the evolution of d + 1 traded (liquid) assets. We assume
that the risk-free asset (the money market account) is constant, or equivalently, that the interest rates
are zero. This is a customary assumption in the utility maximization literature which does not restrict
generality as long as interest rates are deterministic. The d risky assets, denoted by S = (S1, . . . , Sd),
are assumed to be a (vector-valued, càdlàg) semimartingale on the stochastic basis (Ω,F , (Ft)0≤t≤T ,P)
which verifies the usual assumptions of completeness and right-continuity.

The trading period is the interval [0, T ]. A continuous-time trading (or investment) strategy is a
predictable, S-integrable and Rd-valued process H, where Ht = (H1

t , . . . , Hd
t ) represents the number of

shares of each risky asset held by the agent in the infinitesimal interval [t, t + dt]. If the strategy is
(self)-financed by borrowing/investing in the risk-free money market, given the initial endowment x the
(càdlàg) wealth process X of the investor evolves according to

Xt = x +
∫ t

0

HsdSs, 0 ≤ t ≤ T.

We denote by X (x) the set of wealth processes with initial capital x, eventually subject to some re-
strictions depending on the preferences of the agent. The main goal of the present note is to define the
precise restrictions needed in the definition of X (x), in the context of optimal investment. We model
the preferences of an investor with time horizon T by expected utility from terminal wealth. A utility
function is a function U : (a,∞) → R for some −∞ ≤ a < ∞, which is nondecreasing and concave.
While further additional assumptions are usually made on the utility function U , they are not needed for
our purposes. The optimal investment problem can be formulated as

u(x) := sup
X∈X (x)

E [U(XT )] , (1)
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where u denotes the value function, also known as indirect utility. In what follows, X∗(x) or simply X∗

indicates the optimal wealth process (if it exists) and H∗ the optimal trading strategy, X∗ = x+
∫

H∗dS.
As it is well known, doubling strategies or similar arbitrage schemes should be excluded from the

class of investment strategies. Therefore, the very definition of the domain X (x) is a delicate issue. The
nature of the utility function U itself leads to two different cases:

If −∞ < a < ∞, the agent tolerates only to lose a fixed amount of money (no more than x − a).
Typical examples are the logarithmic or power utility. The natural admissibility condition is to require
wealth processes to be uniformly bounded below by a, which means that the agent never exceeds his/her
finite credit line (see e.g. [KS99], [BF08] and the discussions and bibliography cited there). Under
additional hypotheses on the utility function U , in this case the optimization problem (1) can be solved
by duality methods and the optimal strategy is admissible.

The case a = −∞ corresponds to an infinite credit line. The archetypal example is the exponential
utility, U(x) = 1

γ e−
1
γ x. Here the definition of admissibility is a much more delicate issue, and this is

exactly where the contribution of the present note lies. In Section 3, admissibility is defined in terms of
a loss control which is a martingale under the historical measure P and satisfies a natural compatibility
condition with the preferences of the investor. To the best of our knowledge, this is the first attempt to
use a P-martingale as a bound on losses of admissible strategies.

The paper is organized as follows: Section 2 reviews existing definitions of admissibility for a = −∞,
pointing out the technical difficulties related to this case. This review plays a double role: it motivates
the introduction of our new admissible class X ad(x) and allows us to compare it with the previously
defined admissible classes. Section 3 contains the definition of X ad(x) and its properties: the main result
is Lemma 3.2 stating the so-called ”supermartingale property”. Section 4 concludes with a thorough
comparison of the newly defined class with the literature. For the sake of completeness, some needed
Lemmas are presented in the Appendix.

2 Existing definitions of admissible strategies when a = −∞
The literature is roughly split into two main branches: economically reasonable definitions of strategies,
stated in terms of bounds on the losses, versus the good mathematical definition, given through the
so-called ”supermartingale property” of the wealth processes. Our goal is to define a class of strate-
gies/integrals which is a good compromise between these two directions, analyzed hereafter.

2.1 Admissibility defined by bounds on losses

The first direction focuses on the economic interpretation of admissibility of the strategies H, by intro-
ducing a pathwise loss control on the wealth processes X = x +

∫
HdS. In case S is locally bounded,

Schachermayer [Sch01] defines as admissible the wealth processes (and relative strategies) which are
uniformly bounded from below by some constant, in analogy to the definition when a is finite:

X bb(x) = {X | (∃) c > 0 Xt ≥ −c, 0 ≤ t ≤ T}.
This amounts to having a finite credit line, which is dependent on the strategy. The analysis in [Sch01],
based on the above definition of admissibility, actually works for the more general case of S being sigma-
bounded, namely when there exist a scalar positive integrand ϕ such that

∫
ϕdS is (well defined and)

bounded. The concept of sigma localization was introduced in [Kal02], and sigma-boundedness was used
in the context of utility maximization in [KS06].

Biagini and Frittelli [BF05, BF08] allow for possibly non locally bounded S, so the set X bb(x) may
be trivial. Therefore, if one is willing to invest in such a market, the admissibility condition must be
relaxed. The solution proposed there is the following. Consider a control random variable W which is
compatible with the preferences, that is it verifies the U -integrability condition

E[U(−αW )] > −∞, (2)

either for all constants α > 0 or for (the weaker requirement of) some α > 0. Denote by W the set of
random variables W which satisfy (2). For a fixed W ∈ W, define the class of admissible wealth processes

XW (x) = {X | (∃) c > 0 Xt ≥ −cW for all t ∈ [0, T ]}. (3)
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When W = 1, XW (x) = X bb(x). As may be easily derived from the mathematical details provided in
the Appendix, a combination of Ansel-Stricker Lemma [AS94] and Fenchel inequality shows that wealth
processes X ∈ XW (x) are supermartingales under any probability measure Q which is a sigma-martingale
measure for S

Q ∈Mσ = {Q′ ¿ P | S is a sigma-martingale under Q′}
and has finite V -entropy

Q ∈ PV = {Q¿ P | (∃)y > 0, E[V (y
dQ
dP

)] < ∞}.

Here V (y) = supx{U(x) − xy} is the convex conjugate of U . The set Mσ ∩ PV is actually the dual
domain of the optimization problem (1). If, for the same fixed W ∈ W, some restrictions in terms of W
are imposed on the jumps of S, (there exist a non trivial set of W -controlled strategies), then the dual
domain Mσ ∩ PV satisfies a closure property, allowing for a complete duality theory.

In spite of the higher flexibility, compared to wealth bounded below by a constant, there is still no
guarantee about the admissibility of the optimal process X∗ - it may or may not be controlled from below
by cW , see the examples in [BF05].

Remark 2.1. Even when S is locally (or sigma)-bounded, an alternative to X bb(x) is

XU (x) =
{

X | (∃)α > 0, E[U(−α sup
0≤t≤T

(X−
t ))] > −∞

}
= ∪W∈WXW (x). (4)

Duality still works, since Mσ ∩ PV is closed. In addition, XU (x) has a much better chance of capturing
the optimal strategy than X bb(x). As a matter of fact, this is exactly the case for the optimal investment
problem in the Black-Scholes model with exponential utility: the maximal loss of the optimal strategy
has a finite exponential moment but it is not bounded below. An evident drawback of the class XU (x)
is that the control is not dynamic, as the maximal loss is known only at the terminal time T .

2.2 Admissibility defined through the supermartingale property

The second direction focuses more on giving a mathematically good definition, in the sense that the opti-
mal process will surely be admissible. The admissible strategies are defined as those strategies for which
the wealth process is a supermartingale under all the probability measures in Mσ ∩ PV (or a martingale
when U is exponential). For locally (or sigma) bounded S, the ”supermartingale strategies” are used
in the Six Authors’ paper [6AU] and Kabanov and Stricker [KS02] for exponential U ; in Schachermayer
[Sch03] for general U and in the more recent Owen and Zitkovic [OZ07] for the case when there is random
endowment. We recall that when S is locally bounded, Mσ are simply the local martingale measures for
S, so that Mσ∩PV are the local martingale measures with finite entropy. The supermartingale strategies
can be used also when S non locally bounded, as shown by Biagini and Frittelli [BF07].

The main point in favor of the supermartingale strategies is that the optimal process X∗ belongs to
this class, but there is a price to pay. Such a definition is not easy to interpret economically, as it is
given in terms of the dual set of probability measures Mσ ∩ PV . Moreover, realistic market models are
incomplete and thus the description of the whole Mσ ∩ PV is often impossible. Consequently, checking
admissibility with respect to this definition is practically unfeasible.

3 The new class of admissible strategies X ad(x)

As already mentioned, our goal is to define a new class of strategies/integrals which reconciles as much
as possible these two different directions of the current literature. We are thus interested in a class of
admissible strategies which:

1. has a clear financial interpretation, therefore is of the type in Subsection 2.1 (control on losses)

2. the control on losses is adapted (dynamic)
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3. is larger than any economically reasonable class defined so far (for example in [Sch01], [BF05],
[BF08]) to capture as much as possible the optimizer. In other words, we want a class of admissible
strategies larger than the class XU (x) defined in (4), even in the locally bounded case.

It turns out that the good notion of admissibility is a loss control which is a martingale under
the historical measure P, plus a compatibility condition with the preferences in the spirit of Biagini
and Frittelli.

Definition 3.1. The set of admissible processes X ad(x) is the set of wealth processes

Xt = x +
∫ t

0

HsdSs,

such that there exists a (positive) martingale W under the historical measure P such that

Xt ≥ −Wt, 0 ≤ t ≤ T,

and for some α > 0
E[U(−αWT )] > −∞. (5)

The martingale property of the dynamic loss control W = (Wt)t means that bounds on losses at
earlier times are just conditional expectations under historical measure P of the bound on terminal loss.
Condition (5) is the compatiblity with preferences mentioned above.

An immediate consequence of Definition 3.1 is that X ad(x) is a convex cone of processes. This
definition is dynamic, as the control is a process, and admissibility can be checked directly under P. In
addition, X ad(x) is stable under stopping (an easy consequence of Jensen’s inequality) and

XU (x) ⊂ X ad(x),

namely X ad(x) includes any class described in Section 2.1. The result below states that X ad(x) also
enjoys the ”super-martingale property”:

Lemma 3.2. Any X ∈ X ad(x) is a supermartingale under all Q ∈Mσ ∩ PV .

Proof. Fix Q ∈Mσ ∩ PV and denote by Z its density process. Let y > 0 such that E[V (yZT )] < ∞. An
application of the Fenchel inequality at time t gives

U(−αWt) + αyWtZt ≤ V (yZt),

so that

WtZt ≤ V (yZt)− U(−αWt)
αy

Denoting by Mt = V (yZt)−U(−αWt)
αy , Jensen’s inequality implies that M := (Mt)0≤t≤T is a submartingale

under P that controls WZ:
0 ≤ WZ ≤ M.

Now, for each stopping time τ ≤ T ,

EQ[Wτ1{Wτ >c}] = E[ZτWτ1{Wτ >c}] ≤ E[Mτ1{Wτ >c}].

Since P(Wτ > c) ≤ E[Wτ ]/c ≤ E[WT ]/c and the set of random variables (Mτ )τ is uniformly integrable
we obtain:

lim
c→∞

sup
τ
EQ[Wτ1{Wτ >c}] = 0.

In other words, (Wτ )τ is a uniformly integrable family under Q. Since X is bounded below by W ,
(X−

τ )τ≤T is also a uniformly integrable family under Q. Lemma 5.1 in the Appendix implies that X is a
local martingale and a supermartingale under Q.

Remark 3.3. In case Q ∼ P, the proof above can be made even shorter, as M
Z is well defined, and a

Q-submartingale.
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The supermartingale property is very desirable because of its economic budget implications.

Corollary 3.4. The class X ad(x) verifies a budget constraint with respect to all sigma-martingale mea-
sures compatible with the preferences, i.e. for all Q ∈Mσ ∩ PV and all τ ≤ T stopping times,

EQ[Xτ ] ≤ x. (6)

The budget constraint (6), which is a consequence of our definition of admissibility, allows for an easy
proof of the duality inequality

u(x) ≤ inf
y>0

{v(y) + xy},

where v is the dual value function defined by

v(y) = inf
Q∈Mσ

E
[
V (y

dQ
dP

)
]

, y > 0.

which holds without any extra assumption on the utility function U , like Inada conditions on asymptotic
marginal utility U ′ and Reasonable Asymptotic Elasticity of Kramkov and Schachermayer. However, in
order to make the above duality work completely and to recover a primal optimizer, one must impose
such conditions on U plus some restrictions on the jumps of S. These restrictions may be for example
the requirement of local /sigma boundedness on S, or the existence of a ”very integrable” loss control,
i.e. one satisfying condition (2) for all α > 0 (see [BF05], [BF08]).

We would like to point out that there is an extra advantage in considering the dynamic loss control
in X ad(x) compared to the static loss control used by Biagini and Frittelli (3). As it can be seen from
Remark 2.1, the static control, apart from the measurability issues, imposes a stronger condition on the
losses. In other words, usually the class X ad(x) is stricly larger than XU (x). This kind of drawback is
present also in Biagini [Bia04], where the problem of the admissible strategies for general, possibly non
locally bounded, underlyings S was first addressed. There the loss control WB is dynamic, but it is fixed,
equal for all strategies, and pathwise increasing. An integral X is thus admissible in the sense of [Bia04]
if for some c > 0

Xt ≥ −cWB
t

It is easy to check that such processes do belong to X ad(x), since

Xt ≥ −cWB
t ≥ −Et[cWB

T ]

because WB
T ≥ WB

t given the property of the control.

4 Conclusions

We have constructed a new class of admissible strategies which:

a- has a clear financial interpretation, with restrictions imposed in terms of dynamic pathwise loss
controls

b- is larger than previous economically meaningful classes, namely XU (x) ⊂ X ad(x)

c- is (still) smaller than the whole class of ”supermartingale strategies”, so it may not contain the
optimal strategy

d- in some important examples (like the Black-Scholes model with exponential utility, described in
Remark 2.1) the optimizer is actually admissible.

The message of item c- should not be regarded as a negative result due to our specific choice of ad-
missibility. In a general semimartingale model it is impossible to completely reconcile an economically
meaningful definition of admissibility with a mathematically good definition, even if the traded assets are
locally bounded. This point is made clear in a (counter)example of Schachermayer. In [Sch03] there is
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a financial market with two locally bounded risky assets, such that if admissibility in the sense of Sub-
section 2.2 is used, then the optimal strategy is to buy and hold the first asset, completely disregarding
the second. However, if the second asset is withdrawn from the market then the old optimal strategy
is not admissible any more, although it involves only the surviving asset. Therefore, we believe that
Definition 3.1 goes the furthest possible in reconciling ”economically meaningful” with ”mathematically
good” definitions of admissibility for the case of infinite credit line.

5 Appendix: an Ansel-Stricker-type lemma and consequences

Lemma 5.1. (similar to Strasser [Stra])
Let (Xt)0≤t≤T be a sigma martingale. The following are equivalent

1. (Xt)0≤t≤T is a supermartingale (true, not local)

2. (X−
τ )0≤τ≤T is u.i.

If either of these conditions holds, then (Xt)0≤t≤T is also a local martingale

Proof. One direction is obvious, since the negative part of a supermartingale is a submartingale. In order
to prove the other implications, we define Tn = inf{t | |Xt| > n} and consider the stopped process XTn .
As the jump process ∆XTn of XTn verifies

∆XTn
t = Xt∧Tn −Xt∧Tn− ≥

{ −2n if Tn > t
−(XTn)− − n if Tn ≤ t

it is clear that XTn is bounded from below by an integrable random variable, say Θn = −2n−(XTn)− (the
integrability of the latter follows from the of uniform integrability of the negative parts of X along stopping
time). By a version of the Ansel-Stricker Lemma (attached below as Lemma 5.2 for completeness), this
means that XTn is a local martingale. It is well known that a local local martingale is a local martingale,
so X is, indeed, a local martingale. Now, since the negative part of X is of class (D), it is an easy exercise
involving Fatou’s lemma for conditional expectations to show that X is actually a supermartingale.

Lemma 5.2. (Variant of the Ansel-Stricker Lemma) If X is a sigma-martingale and Xt ≥ −W, 0 ≤
t ≤ T where W > 0 is a random variable such that E[W ] < ∞ then

1. (Xt)0≤t≤T is a local martingale

2. (Xt)0≤t≤T is a super martingale
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