
Global optimization of a
generalized linear multiplicative program

Riccardo Cambini and Claudio Sodini

Department of Statistics and Applied Mathematics
Faculty of Economics, University of Pisa
Via Cosimo Ridolfi 10, 56124 Pisa, ITALY
e-mail: cambric@ec.unipi.it, csodini@ec.unipi.it

Abstract
In this paper a solution algorithm for a class of generalized linear mul-

tiplicative programs having a polyhedral feasible region is proposed. The
algorithm is based on the so called optimal level solutions method. Some
optimality conditions are used to improve the performance of the proposed
algorithm. Results of a computational test are provided.

Key words: generalized linear programming, optimal level solutions, global
optimization.
AMS - 2000 Math. Subj. Class. 90C05, 90C26, 90C31.
JEL - 1999 Class. Syst. C61, C63.

1 Introduction

The aim of this paper is to study, from both a theoretical, an algorithmic
and a computational point of view, the following class of generalized linear
problems:

P :

{
inf f(x) = cTx+ (qTx+ q0)φ(dTx+ d0)

x ∈ X = {x ∈ <n : Ax ≤ b}

where A ∈ <m×n, b ∈ <m, c, d, q ∈ <n, q0, d0 ∈ < and X 6= ∅. The scalar
function φ(ξ) is assumed to be continuous and strictly monotone, and is

defined for all the values in Λ =
{
ξ ∈ < : ξ = dTx+ d0, x ∈ X

}
.

Actually, in the rest of the paper we will consider only the case of a func-
tion φ(ξ) strictly increasing. This is not a loss of generality since in the case
of a strictly decreasing function φ(ξ) we just have to rewrite the objective
function as f(x) = cTx + (q̂Tx + q̂0)φ̂(dTx + d0) where q̂ = −q, q̂0 = −q0

and φ̂(ξ) = −φ(ξ), so that φ̂(ξ) results to be strictly increasing. It is worth

1

pointing out also that the strict monotonicity assumption regarding to func-
tion φ(ξ) is not restrictive, in the sense that it may be possible to partition
the feasible region X in subsets where φ(ξ) is either strictly monotone or
constant with respect to levels ξ.

The solution method proposed to solve this class of problems is based
on the so called “optimal level solutions” method (see [1, 2, 3, 4, 5, 8]). It
is known that this is a parametric method, which finds the optimum of the
problem by determining the minima of particular subproblems. In particu-
lar, the optimal solutions of these subproblems are obtained by means of a
sensitivity analysis which maintains the optimality conditions.

In Section 2 we describe how the optimal level solutions method can be
applied to problem P ; in Section 3 a solution algorithm is proposed and fully
described; in Section 4 the results of a computational test are provided and
discussed.

2 A parametric approach

In this section we show how problem P can be solved by means of the so
called optimal level solutions approach (see for all [2, 3, 8]). With this aim, let
ξ ∈ < be a real parameter and let us define the corresponding parametrical
subset of X:

Xξ = {x ∈ <n : Ax ≤ b, dTx+ d0 = ξ}

In the same way, the following further subset of X can be defined:

X[ξ1,ξ2] = {x ∈ <n : Ax ≤ b, ξ1 ≤ dTx+ d0 ≤ ξ2}

The parameter ξ ∈ < is said to be a feasible level if the set Xξ is nonempty; in

this light, the previously defined set Λ =
{
ξ ∈ < : ξ = dTx+ d0, x ∈ X

}
is

nothing but the set of all feasible levels. The convexity of the polyhedron X
implies that the set Λ is a closed convex interval. In this light, the following
further notations can be introduced:

ξmin = d0 + inf
x∈X

dTx and ξmax = d0 + sup
x∈X

dTx

Clearly, if X is a compact set then ξmin and ξmax are finite and the set Λ
of feasible levels is compact too. The following parametric subproblem can
then be obtained just by adding to problem P the constraint dTx+ d0 = ξ:

Pξ :

{
inf fξ(x)
x ∈ Xξ

2

where:

fξ(x) = cTx+ (qTx+ q0)φ(ξ) = (c+ φ(ξ)q)Tx+ φ(ξ)q0

An optimal solution of problem Pξ, if it exists, is called an optimal level
solution. Given a feasible level ξ ∈ <, the set of optimal solutions of Pξ
is denoted with Sξ ⊂ Xξ, while the set of all the optimal level solutions is
denoted with S = ∪ξ∈ΛSξ ⊂ X. Obviously, an optimal solution of problem
P is also an optimal level solution and, in particular, it is the optimal level
solution with the smallest value. The idea of this approach is then to scan all
the feasible levels, studying the corresponding optimal level solutions, until
the minimizer of the problem is reached.

In order to propose such a kind of solution algorithm some properties of
optimal level solutions are needed. With this aim, let ξ′ ∈ Λ and assume
that the corresponding optimal level solution x′ exists; notice that x′ is the
optimal solution for the linear programming problem Pξ′ :

Pξ′ :


inf (c+ φ(ξ′)q)Tx+ φ(ξ′)q0

Ax ≤ b
dTx = ξ′ − d0

We can also assume that x′ is a vertex of Xξ′ , so that it is either a vertex of
X or a point belonging to an edge of X. Let:

B = {i : Aix
′ = bi, i = 1, . . . ,m}

N = {1, . . . ,m} \B

where Ai is the i-th row of A, and let AB, AN , bB and bN be the correspond-
ing submatrices of A and b, respectively. The following theorem shows the
existence of segments of optimal level solutions.

Theorem 2.1 Consider problem P and let x′ and x′′ be optimal level solu-
tions corresponding to the feasible levels ξ′ and ξ′′, ξ′ < ξ′′, respectively. If x′

and x′′ share the same set of binding constraints B and the columns of
[
ATB d

]
are linearly independent then the points of the segment x′(θ) = x′ + θ x

′′−x′
ξ′′−ξ′ ,

θ ∈ [0, ξ′′− ξ′], are optimal level solutions corresponding to the feasible levels
ξ′ + θ, respectively.

Proof The points in the segment x′(θ), θ ∈ [0, ξ′′ − ξ′], are trivially feasible
due to the convexity of X. First, it is worth noticing that all the points in
such a segment shares the same set of binding constraints B. This follows
since:

ABx
′ = bB , ABx

′′ = bB ⇒ ABx
′(θ) = bB ∀θ ∈ (0, ξ′′ − ξ′)

ANx
′ < bN , ANx

′′ < bN ⇒ ANx
′(θ) < bN ∀θ ∈ (0, ξ′′ − ξ′)

3

Being x′ and x′′ optimal level solutions and being the columns of
[
ATB d

]
linearly independent then the following Karush-Kuhn-Tucker conditions are
both necessary and sufficient:

c+ φ(ξ′)q = ATBµ
′
B + dλ′ with µ′B≤0, µ′N = 0

c+ φ(ξ′′)q = ATBµ
′′
B + dλ′′ with µ′′B≤0, µ′′N = 0

It yields that:{
µ′B = µ

(c)
B + φ(ξ′)µ

(q)
B

λ′ = λ(c) + φ(ξ′)λ(q)

{
µ′′B = µ

(c)
B + φ(ξ′′)µ

(q)
B

λ′′ = λ(c) + φ(ξ′′)λ(q)

where: [
AB
dT

]T [
µ

(c)
B

λ(c)

]
= c and

[
AB
dT

]T [
µ

(q)
B

λ(q)

]
= q (1)

To prove the level optimality of x′(θ), θ ∈ (0, ξ′′ − ξ′), we just have to verify
the corresponding Karush-Kuhn-Tucker conditions. With this aim, for all
θ ∈ [0, ξ′′ − ξ′] let:

µ′B(θ) = µ
(c)
B + φ(ξ′ + θ)µ

(q)
B

µ′N(θ) = 0

λ′(θ) = λ(c) + φ(ξ′ + θ)λ(q)

Then, it yields:
c+ φ(ξ′ + θ)q = ATBµ

′
B(θ) + dλ′(θ)

so that just the nonpositivity of µ′B(θ) is left to be verified. Since the scalar
function φ(ξ) is continuous and strictly increasing then for all θ ∈ [0, ξ′′− ξ′]
it is:

φ(ξ′) ≤ φ(ξ′ + θ) ≤ φ(ξ′′)

Hence, from µ′B(0) = µ
(c)
B +φ(ξ′)µ

(q)
B ≤ 0 and µ′B(ξ′′−ξ′) = µ

(c)
B +φ(ξ′′)µ

(q)
B ≤ 0

it follows µ′B(θ) = µ
(c)
B + φ(ξ′ + θ)µ

(q)
B ≤ 0 for all θ ∈ (0, ξ′′ − ξ′).

The previous theorem showed that two optimal level solutions x′ and x′′

sharing the same set B of binding constraints are extrema of a segment of
optimal level solutions. It is now worth determining the biggest segment (or
halfline) of optimal level solutions containing x′ and x′′. With this aim, let
x′(θ) = x′ + θ∆x and let us use the notations introduced in the proof of
Theorem 2.1. Since ABx

′(θ) = bB for all θ ∈ <, then points x′(θ) are feasible

4

whenever ANx
′(θ) ≤ bN , that is for all the values θ ∈ [FL, FR] where:

FL =

 −∞ if AN∆x≥0

max
i∈N, Ai∆x<0

{
bi−Aix′
Ai∆x

}
otherwise (2)

FR =

 +∞ if AN∆x≤0

min
i∈N, Ai∆x>0

{
bi−Aix′
Ai∆x

}
otherwise (3)

The points x′(θ), θ ∈ [FL, FR], results to be optimal level solutions if µ′B(θ) =

µ
(c)
B +φ(ξ′+θ)µ

(q)
B ≤ 0, that is for values θ such that φ(ξ′+θ) ∈ [α, β], where:

α =


−∞ if µ

(q)
B ≥0

max
i∈B, µ(q)

i <0

{
−µ(c)

i

µ
(q)
i

}
otherwise (4)

β =


+∞ if µ

(q)
B ≤0

min
i∈B, µ(q)

i >0

{
−µ(c)

i

µ
(q)
i

}
otherwise (5)

Let us denote with φ−1 the inverse of the strictly increasing function φ, and
let φξmax = limξ→ξ−max φ(ξ) and φξmin = limξ→ξ+min

φ(ξ), so that the following
values can be determined:

OL =

{
ξmin − ξ′ if φξmin ≥ α
φ−1(α)− ξ′ if φξmin < α

(6)

OR =

{
ξmax − ξ′ if φξmax ≤ β
φ−1(β)− ξ′ if φξmax > β

(7)

We can then say that the optimality is guaranteed for all the values of θ ∈
[OL, OR] while the feasibility is guaranteed for all the values θ ∈ [FL, FR].
As a consequence, the biggest segment (or halfline) of optimal level solutions
containing x′ and x′′ is given by x′(θ) with:

θ ∈ [θL, θR] where θL = max{OL, FL} and θR = min{OR, FR}

The previously described behaviour suggests how to algorithmically solve
the problem. Starting from an optimal level solution a segment (or half-line)
of optimal level solutions can be scanned; whenever the feasibility or the
optimality is lost, we just have to change the considered subset of the binding
constraints B and iteratively continue the visit of optimal level solutions.
During this visit, the objective function f(x) can be evaluated over the set
of optimal level solution thus obtaining the global optimum.

5

Clearly, the described approach iteratively visits a finite number of ver-
tices and edges of X in a simplex-like way, and this guarantees the finiteness
of the method itself.

Finding the subset of the binding constraints B to be used in order to
determine the segment of optimal level solutions, expecially in case of degen-
eration, could be not so easy. For this reason we apply a numerical approach
for determining the segment of optimal level solutions. Let x′ be the optimal
level solution corresponding to the level ξ′ and let x′δ be the optimal level
solution corresponding to the level ξ′ + δ, with δ > 0 small enough to guar-
antee that x′δ is not a vertex of X and that x′ and x′δ belong to the same
segment of optimal level solutions. As a consequence, it is B(x′δ) ⊆ B(x′)
where B(x′) and B(x′δ) are the sets of binding constraints corresponding
to x′ and x′δ, respectively. Notice that the strict inclusion holds only in
the case x′ is a vertex of X. Hence, we just have to determine a subset
B̃ of B(x′δ) such that the columns of

[
AT
B̃
d
]

are linearly independent and

rank
([
AT
B̃
d
])

= rank
([
ATB(x′

δ
) d
])

. It is worth noticing that in order to de-

termine B̃ just the optimal level solution x′δ has to be considered. Notice
also that in case of nondegeneracy it is B̃ = B(x′δ) being x′δ not a vertex of
X.

The described approach is summarized in procedure “Parameters()” where
x′ is an optimal level solution which belongs to an edge of X but is not a
vertex of X. This procedure determines a segment (or halfline) of optimal
level solutions of the kind x′ + θ∆x, θ ∈ (θL, θR). With this aim, notice that
for all θ ∈ (θL, θR) it is:{

AB̃(x′ + θ∆x) = bB̃
dT (x′ + θ∆x) = ξ′ + θ

so that it yields: [
AB̃
dT

]
∆x =

[
0
1

]
(8)

3 Solution algorithm

In order to find a global minimum (assuming that one exists) it would be
necessary to solve problems Pξ for all the feasible levels. In this section we
will show that this can be done by means of a finite number of iterations,
using the results of the previous section. The method scans all the feasible
levels starting from a certain feasible level ξ′; the levels ξ > ξ′ are visited
in increasing order, while the levels ξ < ξ′ are visited in decreasing order.

6

Procedure Parameters(inputs : x′; outputs : ∆x, FL, FR, OL, OR, θL, θR)
let B(x′) = {i : Aix

′ = bi, i = 1, . . . ,m} and N = {1, . . . ,m} \B(x′);

let B̃ ⊆ B(x′) such that the columns of
[
AT
B̃
d
]

are linearly independent

and rank
([
AT
B̃
d
])

= rank
([
ATB(x′) d

])
;

let ∆x be the solution of the linear system (8);

let µ
(c)

B̃
, λ(c), µ

(q)

B̃
and λ(q) be the solutions of the linear systems (1);

let FL, FR, α, β, OL, OR as described in (2), (3), (4), (5), (6), (7);
set θL := max{OL, FL} and θR := min{OR, FR};

end proc.

For the sake of convenience, the described algorithm visits the feasible levels
only in increasing order, hence the levels ξ < ξ′ can be analyzed by solving
the following problem which is equivalent to P :

P ≡ P̃ :

{
inf f(x) = cTx+ (q̃Tx+ q̃0)φ̃(d̃Tx+ d̃0)

x ∈ X

where φ̃(y) = −φ(−y), q̃ = −q, d̃ = −d, q̃0 = −q0 and d̃0 = −d0. In this
light, φ̃(y) is an increasing function just like φ(y), and the decreaseness of
the feasible levels of P corresponds to the increaseness of the feasible levels
of P̃ .

The following procedures “Main()” and “Visit()” can then be proposed.
Procedure “Main()” initialize the algorithm by determining the set of feasi-
ble levels and a starting incumbent solution, then it uses procedure “Visit()”
to obtain the global optimal solution (if it exists). Notice that in procedure
“Main()” there is also one more optional subprocedure, namely “ImproveS-
tartingValues()”, which is aimed to improve the starting incumbent optimal
solution. This optional procedure will be discussed later.

Procedure “Visit()” scans iteratively the given set of feasible levels ob-
taining the best solution. Notice that “Visit()” uses a subprocedure “MinRe-
striction()” which determines the minimum of the continuous single valued
function z(θ) in a closed interval. Observe that procedure “MinRestriction()”
can be implemented numerically, and eventually improved for specific func-
tions f(x) (see [2, 3, 8]).

Notice that the optional subprocedure “ImplicitVisit()” evaluates the
opportunity of avoiding the explicit visit of some feasible levels whenever
FR < OR. Specifically speaking, in the interval [0, OR − FR] the function
z(θ) represents an underestimation for the objective function; as a conse-
quence, if minθ∈[0,OR−FR] z(θ) ≥ UB there is no need to visit such an interval
of feasible levels and the procedure can skip to the level ξ′ + (OR − FR).

7

Procedure Main(inputs : P ; outputs : Opt, OptV al)
Compute the values ξmin := d0 + inf

x∈X
dTx and ξmax := d0 + sup

x∈X
dTx;

Let ξ′ ∈ (ξmin, ξmax);
if inf

x∈Xξ′
fξ′(x) = −∞ then Opt := [] and OptV al := −∞

else
if φ(ξ) is strictly decreasing then
φ(ξ) := −φ(ξ), q := −q, q0 := −q0

end if ;
Let x′ := arg min

x∈Xξ′
fξ′(x), x̄ := x′ and let UB := f(x̄);

Optional : [x′, ξ′, x̄, UB] := ImproveStartingV alues();
[x, UB] := V isit(P, ξ′, ξmax, x

′, x, UB);
[x, UB] := V isit(P̃ ,−ξ′,−ξmin, x′, x, UB);
Opt := x and OptV al := UB;

end if ;
end proc.

Procedure Visit(inputs : P , ξ′, ξmax, x
′, x̄, UB; outputs : Opt, OptV al)

let δ > 0 be the step parameter;
while ξ′ < ξmax
if inf

x∈Xξ′+δ
fξ′+δ(x) = −∞ then x := []; UB := −∞; ξ′ := ξmax

else
let ξ′ = ξ′ + δ;
let x′ := arg min{Pξ′} be an optimal level solution not vertex of X;
[∆x, FL, FR, OL, OR, θL, θR] := Parameters(x′);
let z(θ) = (c+ φ(ξ′ + θ)q)T (x′ + θ∆x) + φ(ξ′ + θ)q0;
set [θ, zinf] := MinRestriction(z(θ), [θL, θR]);
if zinf = −∞ then x := []; UB := −∞; ξ′ := ξmax else

if zinf < UB then UB := zinf ; x := x′ + θ∆x end if ;
set ξ′ := ξ′ + θR;
Optional : ξ′ := ImplicitV isit(ξ′, FR, OR);

end if ;
end if ;

end while;
Opt := x; OptV al := UB;

end proc.

8

Procedure ImplicitVisit(inputs : ξ′, FR, OR; outputs : ξ′)
if FR < OR and ξ′ < ξmax then

set x′ := x′ + θR∆x;
let z(θ) = (c+ φ(ξ′ + θ)q)T (x′ + θ∆x) + φ(ξ′ + θ)q0;
set θ̃ := min{OR − FR; ξmax − ξ′};
set [θ, zinf] := MinRestriction(z(θ), [0, θ̃]);
if zinf ≥ UB then ξ′ := ξ′ + θ̃ end if ;

end if ;
end proc.

In this light, as better is the value UB of the incumbent optimal solution
as more effective is the implicit visit of the levels ξ+ θ with θ ∈ [0, OR−FR].
For this very reason, a “good” starting optimal level solution could improve
the performance of the algorithm. The role of subprocedure “ImproveS-
tartingValues()” is indeed to improve the starting optimal level solution by
comparing it with the optimal level solutions corresponding to feasible levels
close to ξmin and ξmax. Further improvements can be obtained by applying
an algorithm looking for local optima starting from x̄.

The correctness of the proposed algorithm follows since all the feasible
levels are scanned (either explicitly or implicitly) and the optimal solution,
if it exists, is also an optimal level solution.

It remains to verify the convergence (finiteness), that is to say that the
procedure stops after a finite number of steps. With this aim it is worth
pointing out that:

• if OR < FR at least one of the multipliers corresponding to the bind-
ing constraints vanishes in a relative interior point of the edge. As a
consequence, the feasible level ξ′+OR admits alternative optimal level
solutions; in the next iteration a new edge (obviously not connected
with the previous one) is determined and visited;

• if FR ≤ OR the whole edge is visited, the optimal solution correspond-
ing to the feasible level ξ′+FR is a vertex of X, and in the next iteration
a new edge is determined and visited.

As a consequence, at every iterative step of the proposed algorithm, a new
edge of the feasible region is visited (partially, if the case); note also that the
level is increased from ξ′ to at least ξ′ + θR > ξ′, so that it is not possible
to consider an already visited edge; the convergence then follows since in a
polyhedron there is a finite number of possible edges.

9

4 Computational results

The previously described procedures have been fully implemented with the
software MatLab 7.8 R2009a on a Mac OSX computer having 6 Gb RAM
and two Xeon dual core processors at 2.66 GHz.

For the sake of convenience, in the computational test we considered
functions f(x) = cTx + (qTx + q0)(dTx + d0)α with α = 3, 1,−1,−3 so that
both multiplicative and fractional problems are considered (see for all [6, 7]).

We considered problems with a number of variables from n = 10 to
n = 100 and a number of inequality constraints equal to m = d7

2
ne.

The problems have been randomly created; in particular, matrices, vec-
tors and scalars A ∈ <m×n, c, d, q ∈ <n, b ∈ <m and q0, d0 ∈ < have been
generated with components in the interval [-10,10] by using the “randi()”
MatLab function (integer numbers generated with uniform distribution). In
the fractional case, that is for α < 0, the value d0 ∈ < has been chosen in
order to have function dTx+ d0 positive over the feasible region. Within the
procedures, the linear problems have been solved with the “linprog()” Mat-
Lab function. Various instances have been randomly generated and solved.
In particular, for the values of n equal to 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, we solved a number of random problems equal to 1000, 1000, 600, 300,
160, 80, 60, 40, 20, 20, respectively.

The average number of iterations (that is, number of solved relaxed sub-
problems) and the average CPU times spent by the algorithm to solve the
instances are given as the results of the test (see Table 1).

Regarding to Table 1 notice that:

• “α” represents the power of the considered function φ(ξ) = ξα;

• “n” represents the number of variables in the considered problems;

• the columns corresponding to T1, T2 and T3, provide the results ob-
tained by using no improvements (T1), by using just “ImplicitVisit()”
subprocedure (T2), by using both “ImplicitVisit()” and “ImproveStart-
ingValues()” subprocedures (T3).

The obtained results point out the effectiveness of the improvements pro-
posed in Section 3 and a different behaviour of the multiplicative case with
respect to the fractional one. In particular, the performance increases as the
value of α decreases. The results related to fractional functions φ(ξ) (that is
α < 0) are much better that the ones related to multiplicative functions φ(ξ)
(that is α > 0).

10

5 Conclusions

The proposed algorithm allows to solve a class of nonconvex problems. The
computational test shows that it is possible to efficiently handle problems
with up to 100 variables. In particular, the improvement criteria suggested in
Section 3 resulted to be extremely effective in making the algorithm efficient.
The correctness of the method guarantees that the global minimum is found
even in the case of unbounded feasible regions.

References

[1] Cambini R. (1994) A class of non-linear programs: theoretical and algorithmic
results. In: Generalized Convexity, S. Komlósi, T. Rapcsák and S. Schaible
(eds), Lecture Notes in Economics and Mathematical Systems, Springer-
Verlag, Berlin, 405:294-310.

[2] Cambini R. and C. Sodini (2003) A finite algorithm for a class of nonlinear
multiplicative programs. Journal of Global Optimization, 26:279-296.

[3] Cambini R. and C. Sodini (2007) An unifying approach to solve a class of
parametrically-convexifiable problems. In: Generalized Convexity and Re-
lated Topics, I.V. Konnov, D.T. Luc and A.M. Rubinov (eds), Lecture Notes
in Economics and Mathematical Systems, Springer, Berlin, 583:149-166.

[4] Cambini R. and C. Sodini (2009) Global optimization of a rank-two non-
convex program. Mathematical Methods of Operations Research, published
online.

[5] Ellero A. (1996) The optimal level solutions method. Journal of Information
& Optimization Sciences, 17:355-372.

[6] Frenk J.B.G. and S. Schaible (2005) Fractional programming. In: Handbook
of Generalized Convexity and Generalized Monotonicity, Nonconvex Opti-
mization and Its Applications, 76:335-386, Springer, New York.

[7] Konno H. and T. Kuno (1995) Multiplicative programming problems. In:
Handbook of Global Optimization, R. Horst and P.M. Pardalos (eds), Non-
convex Optimization and Its Applications, Kluwer Academic Publishers, Dor-
drecht, 2:369-405.

[8] Schaible S. and C. Sodini (1995) A finite algorithm for generalized linear mul-
tiplicative programming. Journal of Optimization Theory and Applications,
87:441-455.

11

α n Number of Iterations CPU Times (seconds)
T1 T2 T3 T1 T2 T3

3 10 34.475 25.499 24.385 1.3944 1.4102 1.413
3 20 96.475 73.344 69.989 5.3343 5.0209 4.9237
3 30 177.41 136.62 129.69 14.253 12.679 12.266
3 40 270.27 204.6 196.55 30.836 25.576 25.052
3 50 374.31 287.99 273.23 63.012 51.484 49.539
3 60 500.45 391.75 369.62 117.79 96.147 91.827
3 70 621.72 485.05 463.25 196.62 157.28 151.66
3 80 757.9 598.25 566.48 314.51 251.63 240.29
3 90 875.8 666.3 633.6 466.29 358.41 348.5
3 100 955.75 724.2 705.7 625.99 475 467.46
1 10 34.265 23.345 21.726 1.3578 1.2372 1.2344
1 20 96.222 66.109 60.377 5.1877 4.2784 4.0111
1 30 176.96 121.65 109.11 13.948 10.724 9.7367
1 40 270.6 182.65 162.25 30.46 21.924 19.631
1 50 375.56 257.6 221.66 62.638 44.671 38.505
1 60 501.57 343.05 295.85 117.28 82.02 71.113
1 70 622.83 430.42 366.65 195.87 136.9 117.23
1 80 759.88 528.65 450.32 314.41 219.65 188.19
1 90 881 593.35 508.35 468.03 316.05 273.06
1 100 956.15 642.35 558.7 627.4 416.53 366.92
-1 10 22.945 8.938 7.382 0.97263 0.61754 0.57573
-1 20 57.068 13.754 11.737 3.3237 1.2265 1.2211
-1 30 99.505 18.478 16.04 8.3892 2.2019 2.2208
-1 40 147.19 22.773 19.133 17.547 3.5825 3.5077
-1 50 206.36 27.35 24.169 36.124 6.0076 6.0331
-1 60 270.44 31.125 27.387 66.105 9.2639 9.2497
-1 70 333.43 36.367 32.35 109.19 13.948 13.941
-1 80 404.15 42.5 37.425 172.87 20.75 20.269
-1 90 473.25 46.25 43.75 260.89 28.745 29.63
-1 100 540.1 53.7 43.5 366.53 40.487 36.086
-3 10 23.379 8.503 6.784 0.98345 0.57711 0.51309
-3 20 56.456 12.768 10.202 3.2898 1.1156 1.0096
-3 30 98.252 17.078 13.362 8.2859 2.007 1.8056
-3 40 146.39 21.6 15.56 17.454 3.3535 2.8069
-3 50 204.33 25.094 19.831 35.731 5.493 5.0298
-3 60 269.29 28.613 21.55 65.635 8.4711 7.3846
-3 70 328.13 34.3 27.2 107.34 13.139 11.949
-3 80 398.43 39.6 29.975 169.81 19.341 16.658
-3 90 471.85 40.6 28.6 258.38 25.259 20.581
-3 100 537.45 46.8 32.05 363.31 35.353 27.996

Table 1: Computational Results

12

