Universita degli Studi di Pisa
Dipartimento di Statistica e Matematica
- Applicata alPEconomia

Réport n. 320

. Solying a class of low rank fd.c..,programs
via a branch and bound approach:
a computational experience

Riccardo Cambini and Francesca Salvi -

Pisa, luglio 2009
- Stampato in Proprio —

Via Cosi'mo‘Rid'olfi, 1G - 56124 FISA ~ Tel. Segr. Amm. 050 2216231 Segr. Stud. 050 2216317 Fax 050 2216375 -
Cod. Fisc. 80003670504 - . IVA 00286820501 - Web htfp://statmat.cc.unipi.it/ .

Solving a class of low rank d.c. programs
via-a branch and bound approach:
a computational experience

‘R,iccarcio Cambini and Francesca Salvi

Departmen’z: of Statistics and Applied Mathematms
Faculty of Economics, University of Pisa :
Via Cosimo Ridolfi 10, 56124 Pisa, TTALY

e-mail: cambric@ee.unipi.ét, francesca.salvi@unifi.it

Abstract

Various classes of d.c. programs have been studied in the recent literature -
due to their importance in applicative problems. In this paper we consider a
branch and bound approach for soiving a class of d.c. problems. Both stack
policies and partitioning rules are analyzed, pointing out their perfmmance
effectiveness by means of the results of a cemputatlona’i experience.

Key wd'rds: d.c. programming, branch and bound.
AMS - 2000 Math. Subj. Class. 90C30, 90C26.
JEL - 1999 Class. Syst. C61, C63.

1 1ntroducti0n-

The so called d.c. programming is one of the main topn:s in the recent
optimization literature. There is no need to recall its relevance from both a
theoretical (see for all [7]) and an applicative point of view (see for example -
[1, 5, 6, 8, 10, 11, 14, 15] and references therein). In this paper the foliowmg '
d.c. program is considered:

P { min f(z) = clz) — 25 g:(d¥x) ‘ (1)
ze X C R™ ‘ _ .

The set X is a polyhedron given by inequality constramts Az < b and/or
equality constraints Aep® = beg. and/m box constraints { < z < u, where A &
RmX h e R™ L u € RY, Agg € RY™ by e R, dy e R™ forall i =1,... k.
" The functions ¢ : B* — Roand g * R — R, ¢ = 1,...,k, ar¢ convex anci
continuous., We also assume that there exists &, }6’ e R* %uch that &; < d "z < ﬁz
Ve X Vi=1,...,k

In [13] the partlcul&r case of oz} = —:cTQa:—i—q z, with ¢ £ R™ and @ ¢ R™*"
symmetric and positive semi-definite, has been studied in the following form
(where df z = y; forall i=1,...,k):

min f{z) = zmTQm NN g@(yz}
Py (a:y)eXxYCR"xR - (2)
Y={yeR y=dlr,zeX}

The concave case ¢ = 0 of problem (2} has been also analyzed in {12].

Theorem 1. Let us consider problems P and Pjg(a,,@) and let

£ =org min ﬁ}{f(m } cmd_ T=org min ’m{fza(z)} -

.Then; fB("’“) Flz)y < f(“') that z's to saﬁ tha.t(} < flz*) ~ f(T) £ Errp(T).

In order to proceed in the iterations of the branch and bound process it w1ll
he useful to consider the following further error function:

Errpg(a,i) = pa(dl = a0) = (gu(a]) - gi(es))

Notice that it yields Errg{z) = Zz 1 Brrp(z,i).
The following maln procedure “DeBranch()” can then be ploposed

Procedure D(:Branch(mputs P; outputs: Opt OptVal)
ﬁx the tolerance parameter e > {;
initialize the global varzableb a:op, =] and UB = 400
initialize the stack; -
determme the starting vecfors &, € R such that Vi€ {1,..., k}:

&; = fél}}{d@ z} and f; = rna,x{dTm}

Analyze(é, §);
while the stack is nonempty do
(fe(zr), o, B, zp,7)=Select(};
if fel{ep) <UB and l?_»’i::f;f_a____{w}l > ¢ then
Terl oo Bl s ﬁ,a2wa,ﬁ2-,8,
-Spht ey Br)i By iy @2p 1=y
Anaiym(ai B1); Analyze(a? {3’2},
end if;
end while;
Opt 1= 'ropf,, OptVal 1z UB
end proc.

Notice that 2k linear programs are needed to determine the starting vec-
. tors &, 8 € Wk, The sub-procedure named “Select()” extracts from the stack
“the subproblem to be éventually branched; how this can be efficiently done
will be discussed later. The sub-procedure named “Split()” determines a value
v € (@, B) which will be used to divide B(a; #) i two hyper-rectangles (this
"is a generalization of the so called “rectangular partitioning method” [4, 16]).
"The way v is determined will be the core of the following Section 3. Proce-
dure “Analyze()” studies the current relaxed subproblem, eventually improves
the incumbent optimal solution, determineés the index r corresponding to the
maximum error, and finally appends in the stack the obtained results.

i=1,...,k, have been generated with components in the interval [—10, 10} by
using the “randi()” MatLab function (integers numbers generated with uniform
distribution). Within the procedures, the problems have been solved with the
“linprog()”, “quadprog(}” and “fmincon()” MatLab functions. The test counted
250 random instances generated and solved for functions fi and fa, and 1000
random instances gencrated and solved for function f3. The average numbers of
relaxed problemns solved and the average CPU time needed to solve the problems
are given as results of the test. :

3.1 S'tack management

As it 'is very well known, a stack can be manaffed with various policies,
such as FIFO, LIFO, Priotity , and so on. Such a kind of methods have been
approached in the literature.in different ways, for example in {2] a recursive
procedure has been proposed, while in [13] a, priority stack ordered with rospect
to the value fp(zp) is used. For this very reason, it is worth to preliminarily
verify the more efficient policy to be used for managing the stack. For the sake
of convenience, we considered the same partitioning rule used in [2, 13}, that is
the w-subdivision. We considered three different opportumties

® pllorlty qtack as smaller is the value of fp(zg) as bigger is the priority;
s LIFO: the iast appended subploblem is first considered;

s récursive: a LH‘O policy is 1mpl1c1t]y 1mp1emented by means of a recursive
procedure.

. These policies have been computatlona ly tested and the results are summarized
“in Table 1. : |
-The obtained results peint out that, for all the three functlons and for all
the consxdeled values of k, the more efficient policy is the priority one while the
worst is the recursive, for both the average of the number of relaxed problems
solved and of the CPU time spent.” As a consequence, from now on the study
will be based on the priority stack previously described.

32 Partitioning Rules

In the literature various kinds of partitioning criteria have been studied.
Specifically speaking, Phong, Hoai-An and Tao in {13] compared three differ-
_ent partitioning rules in the case of indefinite quadratic programs, named as
“Exhaustive bisection”, “w-subdivision” and “Adaptive bisection”. Their briel
computational tests ‘su gested that the better pérformance is provided by the
“w-subdivision”. Cambini and Sodini in {2, 3] used the “w-subdivision” to solve
indefinite quadratic programs with recursive procedures.

In this paper we propose to compare the “w-subdivision” with 6 more differ-
ent; partitioning criteria. With this aim let us define the following three values: -

o = df sy

o 7y 1= Bkl
o vy 1= AXg MaXyefa, 5] Lt (U —) = (9-(y) = gr{0))}-

k- rl p2 3 pd ph 6 p7
7131 29.776 88,29/ 88.224. 63.288 63.288 88.224 71.368
_ (0.441) {1.2126) (1.338) | (0.88548) | {0.9758) | (1.3998) | (1.0943)
|4 68.48 141.82 141.32 108.24 103,24 141.32 116.57
(0.98206) | (1.964) .| (2.1698) | (1.4795) | (1.6331) | (2.1673) i (1.8038)
fi |5 |. 145.63 21767 | 217.67 163.96 163.96 217.67 | 179.66
(2.0848) | (3.0506) (3.3728) | {2.3204) | (2.5684) ! {2.3743) (2.81)
TR |6 311.22 315.81 815.81 244.34 244.34 815.81 | - 266.12
] (a5418) | (4.4338) (4.9146) | (3.4806) | (3.8486) | (4.9182) | (4.1858)
f i 7] 59618 436,61 439,61 347.7 347.7 43061 | 36848
- (8.8948) (6.228) (6.9068) | (4.9814) | (5.5175) | (6.9101) | (5.8371)
|8 1213.8 617.13 617.13 504.46 504.46 617.13 532.6
(18.533) | (8.7311) (9.7007) | (7.2368) | (8.0324) | (9.7027) | (8.4477)
f 9] 82628 | 841.94 84104 | 704.56 | T04.56 841.94 73217 |
(37.4) (12.087) (13.382). | (10.207) | (11.337) | (13.394) | (J1.742) |
£ | 3] 19.448° 1 10382 103.82 73006 | 72792 103.82 | - 822
(0.30832) | (1.461) (1.636) (1.0431) | (1.1634) | (1.835) - (1.3081)
f2 1 4 40.6 163.07 16133 | 116.34 11362 | 15943 128,86
: (0.61496) | (2.4006) | (2.6659) | (1.7392) | (1.8904) | (2.6284) | (2.1428)
f2 |5 84.76 230.6/ 225.13 168.5 159.93 224.52 18275
- (1.2641) | (3.5162) | (9.8518) | (2.5925) | (2.748) | (3.8438) | (3.1427)
f2 [6] 176.86 | 314.91 302.32 933,62 21893 302.73 25062
| (2.6324) | (4.8539) (5.2284) (3.629) | (3.8284) | (5.2585) | (4.3727)
f2 | 71 354.02 411,86 380.04 | 311.20 | 286.73 391.95 326.19
S (5.3502) (6.3712) (6.8128) | (4.8497) | (5.0589) | (6.8782) | {5.7431)
2|8 699.47 52555 | 490.36 | 404.26 365.98 | 495.02 412.3
o1 {10.858) | (8.0875) | (8.5068) | (6.2725) | (6.4609) | {8.7032) ! (7.2688)
f2 {91 13482 659.22° 605.57 527.26 460.19 618.02 520.99
(21.471) | (10.047) (10.577) | {8.0037) | (8.087) | (10.798) | (9.139)
3 17.136 20496 | 8.444 18.204 10.004 12804 12,696 -
(0.21798) | (0.25029) | (0.17316) | {0.22805) | (0.19558) | (0.2346) | (0.23309)
fa | 4 32.284 36.314 12.878 32,64 16.422 21.016 21.142
(0.38698) | {0.42518) | (0.25615) | (0.38927) | (0.3063) : (0.37464) | (0.37588)
2|5 56.376 56.752 18.43 '52.04 24.868 30.854 31.942
| (0.65404) | (0.65117) | (0.35798) | (0.60365) | (0.45301} | (0.54458) | (0.56076)
Tfa | 6] 06,56 86.806 25.68 81.116 36.752 45.186 47.898
(1.1028) | {0.9855) | (0.48806) | (0.92544) | (0.6563) | (0.78876):| (0.83045)
s |7 162.7 131.11 35.182 12577 | 53.078 65.236 70.07
' (1.8608) | (1.4817) | (0.65552) | (1.426) | {0.9338) | (1.1302) | (1.2038)
fs | 8 | 278718 19542 47.456 160.98 76.076 90.374 100.24
' (3.1666) |- (2.2193) | (0.8719) | {2.1732) | (1.3273) | {1.567T4) | (1.7243)
fa | 9| 462353 205,46 64.146 295.4 109.59 12822 146
(6.5116) | (3.3771) | (1.1626) | (3.3876) | (1.906) | (2.2048) -1 (2.5178)

" Table 2: Partitioning rules comparison

functions fi and fa;

s the w-subdivisions are effective just for small values of k

These results suggest the following remarks:

e it is quite obvious that the efficiency of the method depends on the con-
sidered classes of objective functions;

(k< 6)- and for

i4] J. E. Falk, R M. Soiand {1969): An algomihm for separoble nonconver
PTOGramming pmb!ems Management Sclence 15, 550-569

[5] C.A. Floudas, P. M Pardalos, (1999) Hendbook of Test Problems in Loml
and Glebal Optimization, Nonconvex Optimization and ILS Applications,
“vol. 33, Spnnger Berhn

[6] R. Horst, P. M. Pardalos, (1995): Handbook of Global' Optimization, Non-
convex Optimization and Its Applications, vol. 2, Kluwer Academic Pub-
lishers, Dordrecht

- [7] R. Horst, N. V. Thoai, (1999) D.C programming: Overview, Jouinal of
Optimization Theory and Applications, vol. 10‘3 No 1, 1 43

[8 R. Hor%t H. Tuy, (1990) Global optimization deterministic o;pproaches
f;pimgm Vcr]ag .

(9] F. A A Khayyai, H. D, Sherali, (2000): On Fmitely te’rminating‘ branch
- and bound algorithms for some global optimization problems, STAM Journal
Optimization, vol. 10, No. 4, 1049-1057

[10] H. Konno, P.T. Thach, H. Tuy, (1997): Optimization on low rank non-
convex structures, Nonconvex Optimization -and Its Applications, vol. 15,
Kluwer Academic Publishers, Dordrecht

~j11} H. Konno, A, Wijayanayake, (2002) Portfolio optzmzzatwn under d.c.
 transaction costs and minimal fransaction unit constraints, Journal of
Global Optimization, 22, 137-154

[12] J. Parker, N. V. Sahinidis, (1998): A Finite Algorithm for Global Mini-

mization of Seporable C’encaue Programs, Jourral of Global Op‘axmzzahon -

12, 1-36

[13] T.Q. Phong, L.T. Hoai An, P.D. Tao, (1995): Decomnposition branch and
bound method for globally solving linearly constrained indefinite quaedratic
minimization problems, Operations Research Letters, 17, pp. 215-220

(14] H.S. Ryoo, N. V. Sahinidis (2003): Global optimizaﬁoﬁ of mult'éplz'éa.tive
_programs, Journal of Global Optimization, vol. 26, pp. 387-418

[15] H. Tuy, 1996) A general d.c. approach ‘to location. problems, State of
the art in global optimization, edited by C.A. Floudas, P. M. Pardalos,
Norniconvex Optimizasion and Its Apphcatlons vol. 7, pp. 413-432, Kluwer
Academic Publishers, Dordrecht ‘

[16] H. Tuy, (1998): Conver Analysis and Global Opt?lm'ézdtion‘ Nonconvex Op-
timization and its Apphcatlom vel. 22, Kluwer Academlr Publishers, Dor-
drecht :

