- Universita degli Studi di Pisa |
Dipartimento di Statistica ¢ Matematica
Applicata al’Economia

Report n. 321

Solvmg a class of 10W rank de. programs
" via a branch and reduce approach:
- -a computational study

Riccardo Cambini and Francesca Salvi

Pisa, Tuglio 2009
- Stampato in Proprio —

Via Cosimo Ridolfi, 10 - 56124 PISA - Tel. Segr Amm. 050 2216231 Segr. Stud. 050 2216317 Fax 050 2216375
Ced. Flsc 8000367[}504 P VA 0028682(}501 Web hitp://statmat.ec.unipi.it/

Solving a class of low rank d.c. programs
via a branch and reduce approach:
a computational study

Riccardo Cambini and Francesca Sahfi ;

Department of Statistics and Applied Mathematics
Faculty of Economics, University of Pisa

Via Cosimo Ridolfl 10, 56124 Pisa, ITALY ,
e-mail: cambric@ec.unipl.it, francesca.salvi@unifi.it

Abstract
. D.C: programs have been widely studied in the recent literature due to their
importance in appiicative problems. In this paper a branch and reduce.approach
for solving a class of d.c. problems is considered. Seven partitioning rules and
some acceleration devices are analyzed. The resuits of a computational study are

provided in order to point out the performance eifectweness of both partttiomnd .
ruies and acceleration devides.

Key words: d.c. programming; branch and reduce.
AMS - 2000 Math. Subj. Class. 90C30, 90C26.
JEL - 1999 Class. Syst. (61, C63. -

1 In’érbducﬁion

" The so called d.c. programming is one of the main topics in the recent
optimization literature. There is no need to recall its relevance from both a
theoretical (see for all [9]) and an applicative point of view (sce for exainple
(L, 3, 5,7, 8 10, 12, 13, 19, 20] and references therem) In this paper the :
followmrf d.c. program is consldcred

'f(m)mc()—zi; J(dr SR
,E'{?szrwm H 'x)_ | S

_’I‘he set Xisa poiyhedmn given by inequality constraints Az < b and /or equal-
ity constraints Ae,= = beq and/or box constraints | < z < u, where A € Rmxn,
beR™, ue R, Ay € RV by € R?, d; € R” for all i =1,...,k The
functions ¢ : R® — Rand g;: R — R i== E .k, are convex and contmuous
We also assume that there exists &, g e R"“ such that Gy < dr r < ﬂi Ve e X
Vi=1,...,k '

In[2] 9] this class of problems have been computationally studied with a branch
and bound approach, pointing out the effectiveness of partitioning rules and of
stack pohuefs for managing the branches. In [16] the particular case of ¢(z) =
Qrc" Qx-+qTx, with ¢ € R™ and @ € R™*™ symmetric and positive semi-definite,

The follofving.result provides an estimation of the error done by solving the
relaxed problem. With this aim the next function will be used:

Err;ag{:c) = flz) - fe(z) =
. k
' pT(D?m —a) - }: {gi(dgw) - Qz‘(ai)]

d==1

i

Theorem 1. Let us conéidew problems P and Pg(o, 3) and let

z* = ai d = in (2 .
* s Eerr*alB{ ,5}{f($)} ane T arg C\’Iglg% :5){fB'(x)}

Then, fB(a:) < f(m)} < f(E); that is to say ﬂmtO < flz*) = fe(E) < Eﬁg(‘) |

In order to proceed in the iterations of the branch and bound process it will
be useful to consider the following further error functmn

Errg(z, i} = m(dr &~) — (gi(d] 7) - gilew))

Notice that it yields ET?"B (z) = E? _q Frra(x, z)
- The foliowing main procedure “Dcanch()” can then be proposed. Wl‘ch
this aim, let us denote with 4;, j =1,...,m, the j-th row of matrix A.

Procedure DeBranch{inputs: P; outputs: Opt, OptVal)

. fix the tolerance parameter € > 0;
initialize the global variables zop = {] and UB = +00;
initialize the stack;
determme the startlng vectors &, B € R* such that vie{1,...,k}:

& = mm{d?:ﬂ} and ;= max{d?-"’}
wEX .

Optmnal compute uj : lﬂinxex{Aj.‘I:} v¥ie {1,...,mh
Analyze(d, B); '
while the stack is nommpty do

(Fo(e5), @ By 25, T, X):=Select();

if felzp) <UB and]MI > ¢ then

Optional : (o, 8) = RHesize(o, 8,1, X);
al = Bl = 3; 02 = q; 52 =0
y=Split{ar, Br); Blr = 7; a2 = ;
Anaiy?e(al ,81) Analyze(o2, 52);
end if;
end while;
Opt 1= Zopes OptVal = UB
end proc.

Notice that 2k linear programs are needed to determine the starting vectors ‘
&, 3 € R*. The sub-procedure named “Select()” extracts from the stack the sub-
problem to be eventually branched. In [2] it has been shown that the way such
a stack is implemented greatly affects the overall performance of the algorithm.
Ih this light, in [2] it is pointed out that a priority stack, where problems having
the smaller lower bound fp(zp) have the biggest priority, is an effective choice.

' The sub-procedure named “Append(}” inserts into the stack the studied sub-
problem. Notice that, since fp(z) is ar underestimation function of f(z), there
is no need to study the current relaxed subproblem in the case fg(zg) > UB.
For the sake of convenience, the tolerancé parameter € > { is also used, avoid-

ing the study when .Mﬁl + The point zp := argmin{Pg} can be
" determined by any of the known algonthms for convex programs, that is any
algorithm which finds an optimal local solution of a constrained problem. In

order to decrease as fast as possible the'error Errp(zp), the eventual branch op-
eration is scheduled for the index r such that r = argmax;—;, A{Err;;(’s B0}

~In this light, notice that condition YB- ‘fﬁi@li > € smphes E’I"T’B(‘L‘B, r) >0

which yields ay < f. This guarantees that a branch operation with respect to
such an index r is possible.

Notice that there are two optional proceduaefs named “Outhmds()” ‘and
“ C'utRegzon()” which will be discussed in the next section-and which are aimed
o0 improve the performance of the solution method by properly reducmg the
bounds '@, 8 and the feasible region X by means of the use of duality results.

Finally, it is worth recalling that a necessary condition for the convergence of .
a branch and bound algorithm is the exhaustiveness of the subdivision process
(see for all [10]). In order to guarantee such a convergence, either particular
subdivision criteria. have to be chosen or a tolerance parameter ¢ > 0 has to
be used in order to geb a solution “sufficiently close” to thé optimum (see for.
example [11]). In this light, the tolerance parameter ¢ > 0 is used in order to
guarantee the numerical convergence of the algorithni in reasonable time.

-3 Branch and Reduce Acceleration Devices

In this section some acceleration techniques are studied in order to improve
the performance of the general branch and bound method described in the
previous section. The aim of these acceleration devices is twofold. In proce-
dure “DeBranch()” we can reduce the bounds by means of the optional sub-
procedure “Resize()”. In procedure “Analyze()” two optional sub-procedures,
named “CutBounds()” and “CutRegion()”, can be used in order to cut the
bounds and, eventually, the.feasiblé région itseif by means of duality results.

3.1 Resizihg the bounds

As it has been described in the previous section, the solution method starts
with the bounds & 8 € R*, computed by means of the 2k linear programs
@; = mingex {d z} and By = maxmgx{dfx}, 1= 1,...,k Clearly, this starting
vectors have the tightest possible values with respect to the feasible region X.

Unfortunately, after some branch iterations the current bounds (e, 8) are
1o more tight with respect to the considered feasible region X N B(a, B). This
produces a “not good” underestimation function fp(x) and hence an error func-
‘tion Errg(z) “too big”. This affects the performance of the solution method,
since the branch iterations are stopped when the error provided by the relaxed
problems results to be sufficiently small.

In this light, in erder to improve the performance of the algorithm we could
periodically recalculate the values of {«, 8} with respect to th(, considered feasi-

ot

By applying Coroliary 1 to the convex subproblems Pg{o, 5} we can obtain
the following specific results. In this light, an inequality constraint is defined
a “valid cut” if it does not exclude any solutions with values smaller than the
incumbent upper bound UB. ‘

- Theorem 3. Consider Problem P and it$ conver relazalion Pgla, B), described
Cin (1) and (3), respectively. Let xp be the optimal solution of Pg(ca, 8) with
value fp{xp). Let alse UB, UB > fp{zp), be the value of the current incum-
bent optimal solution T,p. Then, the following valid cuts hold for thé active
inequality constraints corresponding to xp and having a strictly n@gatwe K-K-T
maultiplier:

Active Constraing | K-K-T Multiplier Indices . Valid Cut

3 dx—3<0 i < 0 i=1,....k | x> 4,5{%%-'
2. oi—diz<0 TTN<O | i=1,.. .k | df7 < oy - LES :f\g(mfg)_
3. A b 0 <0 0 li=1,...,m | ATz > b+ FEoistnl
4. - Ase <6 . Ai <O i=1,...,m | A< v UBMA [€)

5. ejx—u <0 e < @ i=1,...,n el x > g + R fB_.(E_B_)_.
6. | lLi—elz<o0 T <D i=1,....n | efe<l— ﬁ_—._.__—_JZ—UB REIETY

Pmof Consider the constraints of type 1. The result follows directly from
Corollary 1 assuming h(x) = dle — B and noticing that $(0) = fB(‘I' 5)- The
other cases are &nalogovs : 0

The previous theorem suggests some valid inequalities which could be help-
ful in improving the slgorithm performance by cutting off an “useless” part
of the feasible region. With this aim, the convex subproblems Pg(w,) have
to be solved with an algorithm providing both the optimal sclution and the
corresponding K-K-T multipliers {such a kind of algorithms have been callcd
“dual-adequate” in [18]).

Ags it has been shown, these cuts can be applied to the bounds o; < dfz < 8i,

‘i =1,...,k, thus improving the convex relaxation function fz{x) and the re-
lated error function Errg(x). They can also be used in 1educmg the feasible.

‘region X, that is to say the constraints v < Az < band [<’z < u; this .

. does not affect the error by itself; but it improves the effectiveness of the “Re-
size()” optional sub-procedure. These cuts are concretely described in the fol-

" lowing sub-procedures “CutBounds()” and “CutRegion()”. Notice that the use
of “CutRegion()” optional sub-procedure requires in procedure. “DeBranch()”
the computation of the preliminary values v; = mingex{4;2} Vi € {1,...,m}.
Notice finally that many sclvers automatically provides the K-K-T multipiéer’s
corresponding to the optimal solmion making the calculus of the described cuts
extremely cfﬁment

just the'index i corresponding to the biggest error Errp(z,7), 7 = 1,.... k;
«md? meangs that sub-procedure “Resize()” is used with I given by just
the index i corresponding to the second biggest error Errg(z,j), J =
1,...,k: €15t — 10t means that the set I is composed by all of the ten
indices 1,...,10; “2?® — 5" means that the set, I is made by 4 indices
corresponding to the errors Errg(z,j), 7 = 1,...,k, from the second
biggest one to the fifth biggest one; the other cases are analogous;

e the second column “LC” concerns the use of the Lagrangean cuts: “None”
means that neither “CutBounds()” nor “CutRegion()” are used; “CB”
means that only the submprocedure “CutBounds()” is used; “CB + CR”
means that both “CutBounds()” and “(”utRegwn() are used;

® Cohimns 3-9 report the use of the 7 partitioning rules pl — p7.
_Thé. rows of the tables are divided into 5 groups: '
e the first one {row 1) regards the use of no acceleration devices at-all;

e the second one (rows 2 — 3) regards the use of Lagra;igeén cuts and no
“Resize()” ‘

o the third one (rows 4~ 14) regarés the use of “Resize()” and no Lagrangean
cuts;

o the fourth one (rows 15 - 25) reo"ards the use of “Reszze()” and just “Cut-
Bounds()” C

» the last one (rows 26 — 36) regards ‘the use of “Reswe()” and both “Cut-
Bounds()” and “CutRegion()”;

I each row the better performance is emphasized in bold, while the worst
performance is expressed in ialics. - '
It is Worth to point out the followmg obtained computational results:

¢ the “w— subdw;swn process pl proposed and used in [15, 16} is cfeneia.lly
the worst partitioning rule from both the: average nunibher of iterations and
the avera.ge CPU time points of view;

e the partitiening rule 5 is genera,lly the one providing the best perfor- IV
nance;

o the use of “Resize()” sub-procedure is fundamental for having a good
performance; Lagrangean cuts wzthout any “Resize” operation results to
be not effective;

e the use of “CutRegion()” sub-procedure greatly amplifies the effectiveness
of “Resize()” sub-procedure;

o the use of both “CutBounds()” and “CutRegion()” sub-procedures im- -
‘proves the algorithm performance; '

o the use of “Resize()” sub-procedure with respect to just the index corre-
sponding to the biggest error {1%¢) is useless;

p3

CB+CR

'_I‘able 2: Average CPU time spent (& = 10,n = m = 15)

il

26.240 -

20.860

Lesize LC rt p2- pé p5 pb p7
None None 183.250 48.600 34.425 48.812 32.525 40.645 30.376
None CB 788,590 . 48.056 33.721 48,164 32.005 = 39.92% 38697 -
None CB+CR 194790 47960 33.753 48.588 32.812 39.971 38054

1% Nome -170.320- 47.481 38.967 58.466 46302 41.762 47.287
and None' 65.854 31109 23590 20.854 22.106 28196 26.326
gnd .. gre None 54.242 30.005 23.400. 27.414 21.257 26.729 24.540
ond _ gt None 52,412 30957 24700 27.814 21.414 28.225 25.527
ond . 5tk None . - '57.920 . 33.507 26.786 20.370 22.912 30.340 27.242
gnd Lgth None 62.205 36.649 29224 - 31950 24.433 33072 20.477
gnd ik None 69.250. 39.922 31.903 34.324 26.590 35928 32.001
grid .. gth None - 75.966 43449 34.845 37.238 28.869 39.136 34.785
g _ gth None 89.989 47.358 37.854 40454 31.370 42509 37.749
2" - 10" None 90.810 51192 40799 43.695 33.754 45.803 40.632
1% 10" None - 96.307 53.600. 42.587 . 45827 36.080 47.875 42.996
IS CB 175250 47.334 33.932 50.480 47275 . 41.973 47.840
grd OB 57.552 20567 21.825 . 28.566 20.939- 26.691 24.908
ohd . grd B 42407 27740 21205 25.494 19.750 24.336 22.760
ond 4tk CB- 36795 27916 21646 25411 19.563 25248 23.278
gnd gtk “CB 27.654 20.952 23.177 26.546 20,526 26.508 24221
ond gt OB 88,103 © 32037 25147 928.378 21.594 28.684 25818
gnd L pth OB 99.856 34591 27.203 30.318 23.412 31184 27.826
ond gtk CB 42856 37625 20.580° 32681 25.016 33.706 30.042 .
gnd _ gth CB. 45795 40639 31.800 35003 27.205 - 36.110 - 32.275
and ot cB 48.896 43509 33,899 37.778 20.111 - 39.054 34.745
1%t 10t B 52579 46.135 35279 39.805 . 31.378 40.970 37.267
1% CBEYCR 194150 50693 36.839 63.902 54776 . 45.647 54.607
cond B4 CR50.069 25522 18.320 25765 18739 22146 21.934
ond -grd CR4CR. 81,898 21.927 .16.279% 21198 16328 19128 18539
ond gt OB CR 25283 21.049 15673 19.461 15.386 18325 17.594
ord5th OB+ CR 28276 21345 15771 19321 151200 18300 17.518
gnd _gth OB+ CR 22466 21.836 16210 10.742 15.357 18.865 17.872
ord . qth OB CR . 22.096 22904 16982 20336 15.932 10.842 18.566
ord _gth B4 CR 24561 24420 17947 201575 16.628 20.606 19.59%
grd _gth OB+ CR 26039 26183 18.997 22996 17.8Y3 22.034 21.000
ond 30t CB4CR 28.07% 28.001 20177 24659 18.992 23.671 22.229
1%t - 4ot £9.924 . 29.268 .20.992 25217 23.647

8]

o
[10]

[11]

117
(18]
(9]

20]

21}

R. Horst, P. M. Pardalos, (1995): Handbook of Global Optimization, Nonconvex
Optimization and Its Applications, vo} 2 Kluwer Academic Publishers, Dor-
drecht -])

R. Horst, N. V. Thoat, (1999):. D.G. programming: Ouverview, Journal of Opti-
mization Theory and Applications, vol. 103, No 1, 1-43

R. Horst, . Tuy, (1990} Global optzmzzatmn determmwtzc approaches, Springer-
Verlag

F. A. A. Khayyal, H. D. Sherali, {2000): On finitely terminating branch and bound
algorithms for some global optimization problems, SIAM Journal Optimization,

“vol. 16, No. 4, 1049-1057 .

H. Konno, P.T. Thach, H. Tuy, (1997): Optimization on low mnk RONCONVET
structures, Nonconvex QOptimization and f{tb Applications, vol. 15, Kluwer Aca-
demic Publishers, Dordrecht

H. Konno, A. ngayanayake, (2002): Portfolzo optimization under d.c. transaction
costs and mintmal transaction unit constraints, Journel of Global Optimization,
22, 137-154

M. Minoux, {1986): Mathematical Progmmmmg Theory and Algorithms, Wiley-
Intersciences Publication

J. Parker, N. V. Sahinidis, (1998): A Finile Algowlthm for Globel Minimization
of Separable Concave Programs, Journal of Global Optimization, 12, 1-36 '

T.Q. Phong; L.T. Hoai An, P.D. Tao, (1995) Decomposztwn branch and bound
method for globally selving linearly constrained indefinite guadratic mzmmzzatwn
problems, Operations Research Letters, 17, pp. 215220

R.T. Rockafellar, (1972): Conver Analysis, Princeton Unwemty Pless, second
edition -

H.S. Ryoo, N. V. Sahinidis, (1998): A branch-and-reduce approach to global optz‘

mization, Journal of Global Optimization, vol. 8, pp. 107-138

‘H.8. Ryoo, N. V. Sahinidis, (2003): Globael optzmzzamon of multi;olicative pro-
grams, Journal of Global Optimization, vol. 26, pp. 387-418

H. Tuy, (1996):" A general d.c. approach te location problems, State of Lhe art in
global optimization, edited by C.A. Floudas, P. M. Pardalos, Nonconvex Opti-
mization and Its Applications, vol. 7, pp. 413-432, Kluwer Academic Publishers,
Dordrecht

H. Tuy, (1998) Conver. Anatysw and Glabal Optimization, Nonconvex Optimiza-
tion and its Applications, vol: 22, Kiuwer Academxc Publishers, Dordrecht

13

