

Università degli Studi di Pisa Dipartimento di Statistica e Matematica Applicata all'Economia

Report n. 321

Solving a class of low rank d.c. programs via a branch and reduce approach: a computational study

Riccardo Cambini and Francesca Salvi

Pisa, luglio 2009 - Stampato in Proprio –

Solving a class of low rank d.c. programs via a branch and reduce approach: a computational study

Riccardo Cambini and Francesca Salvi

Department of Statistics and Applied Mathematics Faculty of Economics, University of Pisa Via Cosimo Ridolfi 10, 56124 Pisa, ITALY e-mail: cambric@ec.unipi.it, francesca.salvi@unifi.it

Abstract

D.C. programs have been widely studied in the recent literature due to their importance in applicative problems. In this paper a branch and reduce approach for solving a class of d.c. problems is considered. Seven partitioning rules and some acceleration devices are analyzed. The results of a computational study are provided in order to point out the performance effectiveness of both partitioning rules and acceleration devices.

Key words: d.c. programming, branch and reduce. AMS - 2000 Math. Subj. Class. 90C30, 90C26. JEL - 1999 Class. Syst. C61, C63.

1 Introduction

The so called d.c. programming is one of the main topics in the recent optimization literature. There is no need to recall its relevance from both a theoretical (see for all [9]) and an applicative point of view (see for example [1, 3, 5, 7, 8, 10, 12, 13, 19, 20] and references therein). In this paper the following d.c. program is considered:

$$P: \left\{ \begin{array}{l} \min f(x) = c(x) - \sum_{i=1}^{k} g_i(d_i^T x) \\ x \in X \subseteq \mathbb{R}^n \end{array} \right. \tag{1}$$

The set X is a polyhedron given by inequality constraints $Ax \leq b$ and/or equality constraints $A_{eq}x = b_{eq}$ and/or box constraints $l \leq x \leq u$, where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $l, u \in \mathbb{R}^n$, $A_{eq} \in \mathbb{R}^{h \times n}$, $b_{eq} \in \mathbb{R}^h$, $d_i \in \mathbb{R}^n$ for all $i = 1, \ldots, k$. The functions $c : \mathbb{R}^n \to \mathbb{R}$ and $g_i : \mathbb{R} \to \mathbb{R}$, $i = 1, \ldots, k$, are convex and continuous. We also assume that there exists $\tilde{\alpha}, \tilde{\beta} \in \mathbb{R}^k$ such that $\tilde{\alpha}_i \leq d_i^T x \leq \tilde{\beta}_i \ \forall x \in X \ \forall i = 1, \ldots, k$.

In [2] this class of problems have been computationally studied with a branch and bound approach, pointing out the effectiveness of partitioning rules and of stack policies for managing the branches. In [16] the particular case of $c(x) = \frac{1}{2}x^TQx + q^Tx$, with $q \in \mathbb{R}^n$ and $Q \in \mathbb{R}^{n \times n}$ symmetric and positive semi-definite,

The following result provides an estimation of the error done by solving the relaxed problem. With this aim the next function will be used:

$$Err_B(x) = f(x) - f_B(x) =$$

$$= \mu^T (D^T x - \alpha) - \sum_{i=1}^k \left[g_i(d_i^T x) - g_i(\alpha_i) \right]$$

Theorem 1. Let us consider problems P and $P_B(\alpha, \beta)$ and let

$$x^* = \arg\min_{x \in X \cap B(\alpha,\beta)} \{f(x)\} \quad and \quad \overline{x} = \arg\min_{x \in X \cap B(\alpha,\beta)} \{f_B(x)\} \ .$$

Then,
$$f_B(\overline{x}) \leq f(x^*) \leq f(\overline{x})$$
, that is to say that $0 \leq f(x^*) - f_B(\overline{x}) \leq Err_B(\overline{x})$.

In order to proceed in the iterations of the branch and bound process it will be useful to consider the following further error function:

$$Err_B(x, i) = \mu_i(d_i^T x - \alpha_i) - (g_i(d_i^T x) - g_i(\alpha_i))$$

Notice that it yields $Err_B(x) = \sum_{i=1}^k Err_B(x,i)$. The following main procedure "DcBranch()" can then be proposed. With this aim, let us denote with A_j , j = 1, ..., m, the j-th row of matrix A.

Procedure DcBranch(inputs: P; outputs: Opt, OptVal) fix the tolerance parameter $\epsilon > 0$; initialize the global variables $x_{opt} := []$ and $UB := +\infty;$ initialize the stack; determine the starting vectors $\tilde{\alpha}, \tilde{\beta} \in \Re^k$ such that $\forall i \in \{1, \dots, k\}$:

$$\tilde{\alpha}_i = \min_{x \in X} \{d_i^T x\}$$
 and $\tilde{\beta}_i = \max_{x \in X} \{d_i^T x\}$

Optional: compute $v_i := \min_{x \in X} \{A_j x\} \ \forall j \in \{1, \dots, m\};$ Analyze($\tilde{\alpha}, \tilde{\beta}$); while the stack is nonempty do $(f_B(x_B), \alpha, \beta, x_B, r, X) := Select();$ if $f_B(x_B) < UB$ and $\left| \frac{UB - f_B(x_B)}{UB} \right| > \epsilon$ then # Optional : $(\alpha, \beta) := Resize(\alpha, \beta, I, X);$ $\alpha 1 := \alpha$; $\beta 1 := \beta$; $\alpha 2 := \alpha$; $\beta 2 := \beta$; $\gamma:=\mathrm{Split}(\alpha_r,\beta_r);\ \beta 1_r:=\gamma;\ \alpha 2_r:=\gamma;$ Analyze($\alpha 1, \beta 1$); Analyze($\alpha 2, \beta 2$); end if;end while; $Opt := x_{opt}; \ OptVal := UB;$ end proc.

Notice that 2k linear programs are needed to determine the starting vectors $\tilde{\alpha}, \tilde{\beta} \in \Re^k$. The sub-procedure named "Select()" extracts from the stack the subproblem to be eventually branched. In [2] it has been shown that the way such a stack is implemented greatly affects the overall performance of the algorithm. In this light, in [2] it is pointed out that a priority stack, where problems having the smaller lower bound $f_B(x_B)$ have the biggest priority, is an effective choice.

The sub-procedure named "Append()" inserts into the stack the studied sub-problem. Notice that, since $f_B(x)$ is an underestimation function of f(x), there is no need to study the current relaxed subproblem in the case $f_B(x_B) \geq UB$. For the sake of convenience, the tolerance parameter $\epsilon > 0$ is also used, avoiding the study when $\left| \frac{UB - f_B(x_B)}{UB} \right| \leq \epsilon$. The point $x_B := \arg\min\{P_B\}$ can be determined by any of the known algorithms for convex programs, that is any algorithm which finds an optimal local solution of a constrained problem. In order to decrease as fast as possible the error $Err_B(x_B)$, the eventual branch operation is scheduled for the index r such that $r = \arg\max_{i=1,\dots,k}\{Err_B(x_B,i)\}$. In this light, notice that condition $\left| \frac{UB - f_B(x_B)}{UB} \right| > \epsilon$ implies $Err_B(x_B,r) > 0$ which yields $\alpha_r < \beta_r$. This guarantees that a branch operation with respect to such an index r is possible.

Notice that there are two optional procedures named "CutBounds()" and "CutRegion()" which will be discussed in the next section and which are aimed to improve the performance of the solution method by properly reducing the bounds α, β and the feasible region X by means of the use of duality results.

Finally, it is worth recalling that a necessary condition for the convergence of a branch and bound algorithm is the exhaustiveness of the subdivision process (see for all [10]). In order to guarantee such a convergence, either particular subdivision criteria have to be chosen or a tolerance parameter $\epsilon > 0$ has to be used in order to get a solution "sufficiently close" to the optimum (see for example [11]). In this light, the tolerance parameter $\epsilon > 0$ is used in order to guarantee the numerical convergence of the algorithm in reasonable time.

3 Branch and Reduce Acceleration Devices

In this section some acceleration techniques are studied in order to improve the performance of the general branch and bound method described in the previous section. The aim of these acceleration devices is twofold. In procedure "DcBranch()" we can reduce the bounds by means of the optional subprocedure "Resize()". In procedure "Analyze()" two optional sub-procedures, named "CutBounds()" and "CutRegion()", can be used in order to cut the bounds and, eventually, the feasible region itself by means of duality results.

3.1 Resizing the bounds

As it has been described in the previous section, the solution method starts with the bounds $\tilde{\alpha}, \tilde{\beta} \in \Re^k$, computed by means of the 2k linear programs $\tilde{\alpha}_i = \min_{x \in X} \{d_i^T x\}$ and $\tilde{\beta}_i = \max_{x \in X} \{d_i^T x\}, i = 1, \dots, k$. Clearly, this starting vectors have the tightest possible values with respect to the feasible region X.

Unfortunately, after some branch iterations the current bounds (α, β) are no more tight with respect to the considered feasible region $X \cap B(\alpha, \beta)$. This produces a "not good" underestimation function $f_B(x)$ and hence an error function $Err_B(x)$ "too big". This affects the performance of the solution method, since the branch iterations are stopped when the error provided by the relaxed problems results to be sufficiently small.

In this light, in order to improve the performance of the algorithm we could periodically recalculate the values of (α, β) with respect to the considered feasi-

By applying Corollary 1 to the convex subproblems $P_B(\alpha, \beta)$ we can obtain the following specific results. In this light, an inequality constraint is defined a "valid cut" if it does not exclude any solutions with values smaller than the incumbent upper bound UB.

Theorem 3. Consider Problem P and its convex relaxation $P_B(\alpha, \beta)$, described in (1) and (3), respectively. Let x_B be the optimal solution of $P_B(\alpha, \beta)$ with value $f_B(x_B)$. Let also UB, $UB \ge f_B(x_B)$, be the value of the current incumbent optimal solution x_{opt} . Then, the following valid cuts hold for the active inequality constraints corresponding to x_B and having a strictly negative K-K-T multiplier:

	Active Constraint	K-K-T Multiplier	Indices	Valid Cut
1.	$d_i^T x - \beta_i \le 0$	$\mu_i < 0$	$i=1,\ldots,k$	$d_i^T x \ge \beta_i + \frac{UB - f_B(x_B)}{\mu_i}$
2.	$\alpha_i - d_i^T x \le 0$	$\lambda_i < 0$	$i=1,\ldots,k$	$d_i^T x \le \alpha_i - \frac{UB - f_B(x_B)}{\lambda_i}$
3.	$A_i x - b_i \le 0$	$\mu_i < 0$	$i=1,\ldots,m$	$A_i^T x \ge b_i + \frac{UB - f_B(x_B)}{\mu_i}$
4.	$v_i - A_i x \le 0$	$\lambda_i < 0$	$i=1,\ldots,m$	$A_i x \leq v_i - \frac{UB - f_B(x_B)}{\lambda_i}$
5.	$e_i^T x - u_i \le 0$	$\mu_i < 0$	$i=1,\ldots,n$	$e_i^T x \ge u_i + \frac{UB - f_B(x_B)}{\mu_i}$
6.	$l_i - e_i^T x \le 0$	$\lambda_i < 0$	$i=1,\ldots,n$	$e_i^T x \le l_i - \frac{UB - f_B(x_B)}{\lambda_i}$

Proof. Consider the constraints of type 1. The result follows directly from Corollary 1 assuming $h(x) = d_i^T x - \beta_i$ and noticing that $\psi(0) = f_B(x_B)$. The other cases are analogous.

The previous theorem suggests some valid inequalities which could be helpful in improving the algorithm performance by cutting off an "useless" part of the feasible region. With this aim, the convex subproblems $P_B(\alpha, \beta)$ have to be solved with an algorithm providing both the optimal solution and the corresponding K-K-T multipliers (such a kind of algorithms have been called "dual-adequate" in [18]).

As it has been shown, these cuts can be applied to the bounds $\alpha_i \leq d_i^T x \leq \beta_i$, $i=1,\ldots,k$, thus improving the convex relaxation function $f_B(x)$ and the related error function $Err_B(x)$. They can also be used in reducing the feasible region X, that is to say the constraints $v \leq Ax \leq b$ and $l \leq x \leq u$; this does not affect the error by itself, but it improves the effectiveness of the "Resize()" optional sub-procedure. These cuts are concretely described in the following sub-procedures "CutBounds()" and "CutRegion()". Notice that the use of "CutRegion()" optional sub-procedure requires in procedure "DcBranch()" the computation of the preliminary values $v_j := \min_{x \in X} \{A_j x\} \ \forall j \in \{1, \ldots, m\}$. Notice finally that many solvers automatically provides the K-K-T multipliers corresponding to the optimal solution, making the calculus of the described cuts extremely efficient.

just the index i corresponding to the biggest error $Err_B(x,j)$, $j=1,\ldots,k$; " 2^{nd} " means that sub-procedure "Resize()" is used with I given by just the index i corresponding to the second biggest error $Err_B(x,j)$, $j=1,\ldots,k$; " $1^{st}-10^{th}$ " means that the set I is composed by all of the ten indices $1,\ldots,10$; " $2^{nd}-5^{th}$ " means that the set I is made by 4 indices corresponding to the errors $Err_B(x,j)$, $j=1,\ldots,k$, from the second biggest one to the fifth biggest one; the other cases are analogous;

- the second column "LC" concerns the use of the Lagrangean cuts: "None" means that neither "CutBounds()" nor "CutRegion()" are used; "CB" means that only the sub-procedure "CutBounds()" is used; "CB + CR" means that both "CutBounds()" and "CutRegion()" are used;
- Columns 3-9 report the use of the 7 partitioning rules p1-p7.

The rows of the tables are divided into 5 groups:

- the first one (row 1) regards the use of no acceleration devices at all;
- the second one (rows 2-3) regards the use of Lagrangean cuts and no "Resize()";
- the third one (rows 4-14) regards the use of "Resize()" and no Lagrangean cuts;
- the fourth one (rows 15 25) regards the use of "Resize()" and just "Cut-Bounds()";
- the last one (rows 26 36) regards the use of "Resize()" and both "Cut-Bounds()" and "CutRegion()";

In each row the better performance is emphasized in bold, while the worst performance is expressed in italics.

It is worth to point out the following obtained computational results:

- the " ω -subdivision" process p1 proposed and used in [15, 16] is generally the worst partitioning rule from both the average number of iterations and the average CPU time points of view;
- the partitioning rule p5 is generally the one providing the best performance;
- the use of "Resize()" sub-procedure is fundamental for having a good performance; Lagrangean cuts without any "Resize" operation results to be not effective;
- the use of "CutRegion()" sub-procedure greatly amplifies the effectiveness of "Resize()" sub-procedure;
- the use of both "CutBounds()" and "CutRegion()" sub-procedures improves the algorithm performance;
- the use of "Resize()" sub-procedure with respect to just the index corresponding to the biggest error (1st) is useless;

Resize	LC	p1	p2	р3	p4	p5	p6	p7
None	None	183.220	48.699	34.425	48.812	32.525	40.645	39.376
None	CB	182.590	48.056	33.721	48.164	32.005	39.921	38.697
None	CB + CR	194.790	47.960	33.753	48.588	32.312	39.971	38.954
1 st	None	170.320	47.481	33.967	58.466	46.302	41.762	47.287
2^{nd}	None	65.354	31.199	23.590	29.854	22.106	28.196	26.326
$2^{nd} - 3^{rd}$	None	54.242	30.095	23.400	27.414	21.257	26.729	24.549
$2^{nd}-4^{th}$	None	52.412	30.957	24.709	27.814	21.414	28.225	25.527
$2^{nd} - 5^{th}$	None	57.920	33.597	26.786	29.370	22.912	30.340	27.242
$2^{nd} - 6^{th}$	None	62.205	36.649	29.224	31.950	24.433	33.072	29.477
$2^{nd} - 7^{th}$	None	69.250	39.922	31.903	34.324	26.590	35.928	32.001
$2^{nd} - 8^{th}$	None	75.966	43.449	34.845	37.238	28.869	39.136	34.785
$2^{nd} - 9^{th}$	None	83.389	47.358	37.854	40.454	31.370	42.509	37.749
$2^{nd} - 10^{th}$	None	90.310	51.192	40.799	43.695	33.754	45.893	40.632
$1^{st} - 10^{th}$	None	96.307	53.690	42.587	45.827	36.080	47.875	42.996
1 st.	CB	175.230	47.334	33.932	59.480	47.275	41.973	47.840
2^{nd}	CB	57.552	29.567	21.825	28.566	20.939	26.691	24.908
$2^{nd}-3^{rd}$	CB	42.407	27.740	21.205	25.494	19.750	24.336	22.760
$2^{nd} - 4^{th}$	CB	36.795	27.916	21.646	25.411	19.563	25.248	23.278
$2^{nd} - 5^{th}$	CB	37.654	29.952	23.177	26.546	20.526	26.598	24.221
$2^{nd} - 6^{th}$	CB	38.103	32.037	25.147	28.378	21.594	28.684	25.818
$2^{nd} - 7^{th}$	CB	39.356	34.591	27.293	30.318	23.412	31.184	27.826
$2^{nd} - 8^{th}$	CB	42.356	37.625	29.589°	32.681	25.016	33.706	30.042
$2^{nd} - 9^{th}$	CB	45.795	40.639	31.890	35.103	27.205	36.110	32.275
$2^{nd} - 10^{th}$	CB	48.896	43.599	33,899	37.778	29.111	39.054	34.745
$1^{st} - 10^{th}$	CB	52.573	46.135	35.279	39.805	31.378	40.970	37.267
1 st	CB + CR	194.130	50.693	36.839	68.902	54.776	45.647	54.607
2^{nd}	CB + CR	50.069	25.522	18.329	25.765	18.739	22.146	21.934
$2^{nd} - 3^{rd}$	CB + CR.	31.898	21.927	16.279	21.198	16.328	19.128	18.539
$2^{nd}-4^{th}$	CB + CR	25.233	21.049	15.673	19.461	15.386	18.325	17.594
$2^{nd}-5^{th}$	CB + CR	23.276	21.145	15.771	19.321	15.120	18.309	17.518
$2^{nd} - 6^{th}$	CB + CR	22.466	21.836	16.210	19.742	15.357	18.865	17.872
$2^{nd} - 7^{th}$	+CB+CR	23.096	22.994	16.982	20.386	15.932	19.642	18.566
$2^{nd} - 8^{th}$	CB + CR	24.561	24.420	17.947	21.575	16.628	20.696	19.591
$2^{nd} - 9^{th}$	CB + CR	26.059	26.183	18.997	22.996	17.873	22.034	21.000
$2^{nd} - 10^{th}$	CB + CR	28.073	28.001	20.177	24.659	18.992	23.671	22.229
$1^{st} - 10^{th}$	CB + CR	29.924	29.268	20.992	26.240	20.860	25.217	23.647

Table 2: Average CPU time spent (k = 10, n = m = 15)

- [8] R. Horst, P. M. Pardalos, (1995): Handbook of Global Optimization, Nonconvex Optimization and Its Applications, vol. 2, Kluwer Academic Publishers, Dordrecht
- [9] R. Horst, N. V. Thoai, (1999): D.C. programming: Overview, Journal of Optimization Theory and Applications, vol. 103, No 1, 1-43
- [10] R. Horst, H. Tuy, (1990): Global optimization deterministic approaches, Springer-Verlag
- [11] F. A. A. Khayyal, H. D. Sherali, (2000): On finitely terminating branch and bound algorithms for some global optimization problems, SIAM Journal Optimization, vol. 10, No. 4, 1049-1057
- [12] H. Konno, P.T. Thach, H. Tuy, (1997): Optimization on low rank nonconvex structures, Nonconvex Optimization and Its Applications, vol. 15, Kluwer Academic Publishers, Dordrecht
- [13] H. Konno, A. Wijayanayake, (2002): Portfolio optimization under d.c. transaction costs and minimal transaction unit constraints, Journal of Global Optimization, 22, 137-154
- [14] M. Minoux, (1986): Mathematical Programming Theory and Algorithms, Wiley-Intersciences Publication
- [15] J. Parker, N. V. Sahinidis, (1998): A Finite Algorithm for Global Minimization of Separable Concave Programs, Journal of Global Optimization, 12, 1-36
- [16] T.Q. Phong, L.T. Hoai An, P.D. Tao, (1995): Decomposition branch and bound method for globally solving linearly constrained indefinite quadratic minimization problems, Operations Research Letters, 17, pp. 215-220
- [17] R.T. Rockafellar, (1972): Convex Analysis, Princeton University Press, second edition
- [18] H.S. Ryoo, N. V. Sahinidis, (1996): A branch-and-reduce approach to global optimization, Journal of Global Optimization, vol. 8, pp. 107-138
- [19] H.S. Ryoo, N. V. Sahinidis, (2003): Global optimization of multiplicative programs, Journal of Global Optimization, vol. 26, pp. 387-418
- [20] H. Tuy, (1996): A general d.c. approach to location problems, State of the art in global optimization, edited by C.A. Floudas, P. M. Pardalos, Nonconvex Optimization and Its Applications, vol. 7, pp. 413-432, Kluwer Academic Publishers, Dordrecht
- [21] H. Tuy, (1998): Convex Analysis and Global Optimization, Nonconvex Optimization and its Applications, vol. 22, Kluwer Academic Publishers, Dordrecht