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Abstract

Various classes of d.c. programs have been studied in the recent literature -
due to their importance in applicative problems. In this paper we consider
a. branch and reduce approach for solving a class of d.c. problems. Seven
partitioning rules are analyzed and some techniques aimed to improve the overall
~ performance of the algorithm are proposed. The results of a computational
experience are provided in order to point out the performance effectiveness of
the proposed techniques.
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“Introduction

The so called d.c. programming is one of the main topics in the recent
optimization literature. There is no need to recall its relevance from both a
theoretical (see for all [16]) and an applicative point of view (see for exampie
- |3, 6, 15, 17, 19, 20, 26, 27] and refexe‘ﬂ(‘es therein). In this paper the following
d.c. program is conmdezed ' L '

P { min f(?:) = c(:c) - ZL; gz(d;fa:) | . (1)

ze X CR™

The set X is a polyhedron given by inequality constraints Az < b and/or
equality constraints Ae,T = bey and/or box constraints | < z < u, where 4 €
R7X™ b & R™, Lu'€ R®, Agy € RM™ b, e RY d; e R forall i = 1,... k.
The functions ¢ : R* — Rand g; : B — R, i = 1,...,k, are convex and
continuous. We also assume that thu:e exmts &, ﬁ € RF sueh that &; < df z < B
Vee X Vi=1,...,k :

In [1} this class of problems have been computatlona ly studled with a branch
and bound approach, pointing out the effectiveness of partitioning rules and of
stack policies for managing the branches. In {2] this class of programs have been
approached by means-of a branch &nd 1éduce mebhod hased on Lagrangean cuts.
In {23) the particular case of ¢{z) = -2—$ Qr +glz, with ¢ € R® and @ € R™*™



Notice that fz(x) is an underestimation function for f(x) over the set B(a, ),
50 that the following relaxed convex subproblem can be deﬁned and used in the
branch and bound scheme: :

PM%ﬁ*{??f?%(a,ﬁ) | e

The following result provides an estimation of the error done by solving the
relaxed problem. With this aim the next function will be used:

Errg(w) = f@} ~ fa(z) =
. ‘ k-
= Ju.T(DT.’E_—- ot Z f:(d] ) - % sz)]

ga]

Theorem 1. Let us consider pmblems'P and 'PB(a,ﬁ) and let

. = and T = in )t
¥ = arg ezxrm’ ,B){f )} and T argmexxgér%a’ﬂ){fg(tc)}

Then, (%) < f(&*) < /(2), that is to say that 0 < f(z*) — f5(3) < Brra(®),

In order to proceed in the iterations of the branch and bound process it will
be useful to consider the following further error functzon :

Brrp(e,i) = pi(df 2 - o) - (qz(dT ) = gilex))

Notice that it yields Errg(z) = S, Errp(z,i).

2.1 The main procédﬂres

The following main procedure “DcBm'nch'()” can be proposed. With this
~ aim, let us denote with A;, j =1,...,m, the j-th row of maftrix A.

Procedure DcBranch{mput's P, DepthStep, outputs: Opt, Oinal)
fix the tolerance parameter € > 0; ‘
initialize the global vanables Topt = [| and UB := 400,
initialize the stack;
determine the starting vectors &, ge ER‘“ such that Vi € {1,...,k}:

LA = omd T B, e , T
s géi;;{da z} and B E?}%{{d"“ z}

compute v; 1= mingex{A;z} Vi € {1,...,m}; .
depth :=0;
Analyze(&, 3, depth);
while the stack is monempty do
(felzp), o, B, x5,7, X, depth):=Select();
if fg{a:B) < UB and lml > ¢ then

if depth is mult;ple of DepthStep then
(e, B) = Resize{e, 3,1, X};

end if; :

al = 81 = a2 = o B2 =5
yis=Split{or, Br); Blr := 71 a2 1=



Procedure “Analyze{)” studies the current relaxxed subproblem, eventually im-
proves the incumbent optimal solution, determines the index r corresponding.
to the maximum error, and finally appends in the stack tlie obtained results.

Procedure Analyze(inputs: o, 3, depth)
determine the function fg(z) over B(a ,6)
Zpg = argmin{ P}
if flzp) <UB then

Topt = zp and UB = f(zg);
end if;
if fr(zp) <UB and ‘M. > e then

(e, B) = CutBounds(); update fu(z) over B(a, A);
X = CutRegion{}; :
= argmax—1, g {Frre(rs, i)}
depth := depth ¥ 1;
Append(fg(acg) o, B,z5,7, X, depth);
end if;
end proc.

The sub-procedure named “Append()” inserts into the stack the studied sub-
problem. Notice that, since fp(z) is an underestimation function of f(z), there -
is no need to study the current relaxed subproblem in the case fg(zp) > UB.
For the sake of convenience, the tolerance parameter e > 0 is also used, avoid-
ing the study when l%;{%_—w% < €. The point zp = argmin{Pg} can be
determined by any of the known algorithms for convex programs, that is any

algorithm which finds an optimal local solution of a constrained.problem. - In
order to decrease as fast as possible the error Errp(z ), the eventual branch op-
eration is scheduled for the index r such that r = argmax;—1 . k{Frra(zs,i)}.
In this light, notice that condition *QE__UL%(%)! > € ujﬂphes Errglzp,r) > 0
" which yields o, < 8,. This gaa.ranteeé that a branch operation with respect to
such an index r is possible.

Notice that there are two sub-procedures named “CutBounds()” and “CutRe-
gion{)” which has been proposed in {2] in order to improve the performance of
the method by properly reducing the bounds o, 8 and the feasible region X by
means of the use of duality resuits. These sub-procedures will be described in
details in Subsection 2.3.

Finally, it is worth recalling that a necessary condition for the convergence of |
a branch and bound algorithm is the exhaustiveness of the subdivision process
(see for ali [17]). In order to guarantee such a convergence, either particular
subdivision criteria have to be chosen or a toletance parameter ¢ > 0 has to
be used in érder to get-a solution “sufficiently close” to the optimum (see for

. example [18]). In this light, the tolerance parameter e > 0 is used in order to
guarantee the numerical convergence of the algorithm in reasonable time.

o



The previous theorem suggests some valid inequalities which could be help-
ful in improving the algorithm performance by cutting off an’ ° ‘useless” part
of the feasible region. With this aim, the convex subproblems Pg(c, ) have
to be solved with an algorithm providing both the optimal sotution and the
corresponding K-K-T multipliers {(such a kind of algorithms have been called
“dual-adequate” in [26]). -

As it has been shown, these cuts can be applied to the bounds oy < dr x < B,
i =1,...,k, thus improving the convex relaxation function fg(z) and the re:
lated error funchon Errg(z). They can also be used in reducing the feasible
region X, that is to say the constraints v < Az < b and | < o < u; this
does not affect the error by itself, but it improves the effectiveness of the “Re-
szze()” optional sub-procedure. These cuts are concretely described in the fol-
lowing sub-procedures “CutBounds()” and “CutRegion()”. Notice that the use
of “CutRegion()” sub-procedure requires in procedure “DeBranch()” the coro-
putation of the preliminary values v := mingex {A;x} ¥j € {1,...,m}. Notice
finally that many solvers automatically provides the K-K-T muitlphels corre-
sponding to the optimal solution, making the caleulus of the descrzbed cuts
extremely effiment :

Procedure CutBounds(outpats @, ﬂ)
for all4 & {1,...,k} do
let A; be the KK’I‘ multiplier corre‘;pondmg to dTm < Bi;
if As < O-then set oy s= mox{oy, B + y—é——ﬁ‘tm} end if;
“let p; be the KK'T multiplier corresponding to df ¢ > ay;
if p; <0 then set §; = min{f;, o — EE"—"{;?—{JE—B—}}A end if;
end for; - . '
end proc.

Procedure CutRegion{outputs: X))
for alli e {1,...,m} do
let A; be the KKT multiplier corresponding to Az < bq,
if A; <0 then set l; := maz{v, b + M} end-if;
let pz; be the KKT multiplier. correspoudmo* to Ayr > g
if g < 0 then set b; = min{b;, v; ~ U—B——f—’iﬁ’ﬁ} end if;
~end for; :
forallie{l,...,n} do
let A; be the KKT multiplier corlespondmg to z; < < Uy,
if hi < 0 then set l; = max{l;, u; + E_B__M} end if;
let u; be the KKT mult1p ier corlespondmg to xy = I
if g < O then set u% e mm{ui,l - M&Eﬁ_} end if;
end for;
end proc.

3 Computational results

The procedures described in the previous section have been implemented
in order to study their concrete effectiveness. This has been done in a Mat-
Lab R2009a environment on a computer having 6 Gb RAM and two Xeon dual
core processors ab 2.66 GHz. We considered problems with n = 10 variables,



. k DS . Resize pi p2 . p3 i p5 P8 7
1 6 1 2nd 106.65 71.882 72.01 69.147  69.108 72.02 69.294
1 6 1 gud _ grd 76.08 57.363  57.204 55922 55.922 57.412  B5.088
1 & 1 gnd . gth 65.963 56,696  50.657  48.882 - 48.873 50.606  48.363
1 6 1 amo st p0.804 47.333 47412 44.843 44.883 © 47324  45.324
1 6 1 19% — Rt 57.549 45,902 45.98 44245 44245 46961 - 44.157
i 6 2 2md i42.87  88.314 . 88.382 84088  84.039 88412  £5.118
106 20 andogrd ggpgs 73167 73314 70.383  70.4i2 73225 | 7L1I8
i 6 9 gnd_gth 94,471 64.833  64.833  62.363  62.304  64.824  62.775
i 6 2 gnd_gth $0.578 61.147  61.363 58.824  58.735  6L.314  59.029
1 6 2 Mg 86,088 54,48 5952  B7.883 - 57.971 59.588 . 57.902
19 1 R 455.55. - 194.13  193.73  198.68  198.65 193.93  193.85
19 1 20t .a3d 26896 139.86  189.82  143.81 143.76 ° 139.97 140.4
109 1 AL L 192,86  116.62  116.65  117.13 11712 116.63 11689
1 g i gmd gtk 158.47 10251 10243 102.45 102.47Y 102,85  103.08
1 9 . i 158 1 125.06 - 84.333  84.441  83.765  83.755  84.204 83.848
) 2 P 723,58 251.48  251.25  257.31 257.17 | 251.73 25174
19 2 gnd. grd 459.76 194.62 194.64  198.54 198.65 19477  193.88
109 2 gnd . gth 339.51 162.8 162.65 166 . 165.96 162.75  182.17
109 g . gnd _ gth 280.52 141.66 - 141.55  145.73 145.9 141.65  142.75
108 2 1t gt 220.22. 11589 11592  119.26 116.34 . 11575  118.15.
112 1 2~ 18%2.9 348,70  848.7THb  376.89 376.99  348.75 3687
o120 r erdoamd puess . 240076 240,92 25749 - 257.62 240.85  249.94
1 12, .1 2nd o gnd 433 19138 191.37 200.7 200.5 191.28  195.48
1 1z 1 o™ -t 32469 - 16495 | 16538 17123 17151 16480 166.37
112 1 1ft gt o 7859 0 132,92 113.05 116.2 1168.26 11304  113.29
1 iz 2 ond 2556.8 = 477.17  477.76  516.7% E17.34  477.82  491.94
112 2 o3t 13465 350.89 . 350.43  380.7 380,78 350,48 © 360.36
112 2 0 ant g g99.97 28371 283.99  305.54 30653 | 283.6 294.5 -
112 2 o5 G120 241.08 241.09 26062 260.56 243,13 250
112 2 1t 859.1 160.97 16076  171.43 171.33 160.92 166.2°
2 6 1 e 56.822 43,248 36.108  40.297 35.03 - 38.812  37.733
2 6 1 ondiog™d 90208 - 33.861  28.208 31812 28109  30.851  30.129
206 - 1 . gndgth 88.465 20.842 24.95 27.337  24.545  27.366  26.614
26 1 and ogth 30,287 27.95 23.406  25.594 22.97 25.673  24.861.
2 & 1 150w LER 29168  26.861  22.812  24.901 = 22,663 2504 24,178
PR 2 gnd- 78.149  53.208 . -44.614  50.178 | 42.941  49.188  46.307
28 g gnd . grd 56.545 43.317  36.3139 40475  35.495  39.713 37728
26 2 gt ugseg A7.327  32.653  36.04 . 31.584 35188  34.349
2 6 2 Cgnd . pth 46.624 34.881  30.287  33.465  29.485 32376 31733
26 2 Sy 44.158 34069  29.574 32.98 29.475  31.495 . 31.337
2. 9 1 ad 189.56 82455 68.728  83.347 T1.98 . 74.822 - 75.208
2 9 1 andgrd 106.64 50.762  50.485 58564  51.208 55 54.45%
2 9 S B L O (L V4376 49.515 . 42297 47465 42.416  46.3149  44.851
2° 9 1 gnd . gth 80.644 43,901 . 87.416 - 41.822 37.653 40.941 39.891
2 9 1 156 . gth 47.05°  36.832 BL.0OBG  34.307 31.436 354.248  32.485
2§ ) ond 284.16 - 110.56 92.428  113.24 93.04 100.78  99.545
2 ¢ 2 gt 79226 - 83554 T70.485 83485  7LIVE V5743 | 76.584
2 9 g ot gtk 140.05 68.792 58,099 69178 59.762 63.03 63.366
2 9 2 ged gt - 10819 60:238 51.644 58782 52.327 56.218  55.842
2 9 2 15t R 82.238 50.099 . 43.03  48.376 43.891 46.327  44.88]
2 12 1 27 629.94 175.54 185,09  184.67  145.56 151.32  156.36
2 12 1 gnd _grd 279.05. 116.65  92.238 1161 - 96.713 102,23 . 10412
2z 12 1 gnd o gth 193.2 91.604  T74.208  90.139 76.356 82.207 82,168
212 1 gnd . gt 123.87 78792  63.842 74,96 64.347 71.149  69.396
212 -1 1% - kM 60.644 0 56.08 45.455 56.95  44.446 49.475  47.356
2 12 2 g%d 1388.5 248 191.94  267.68  203.05  212.08 . 223.61
2 12 -2 andagd 648.9 171.82 133.88  183.08 144.34 150.43  156.81
2 12 2 2t _gth 38048 13741 1:3.837 143 116.04 120.83  125.08
2 12 3 ondogth gyr s . 11653  94.861 - 116.08 97.337 10492 10492
2 12 2 15 . k0 185.46 76.356  63.693 65.257 70.495  67.436

Tai)lle 1: Average number of relaxed subproblems solved (n =m= 10}

74.604



e in the case k = 6 the “Re&uze operations giving the best performances
are the ones with I = {2,3}, in the case k = 9 we should choose ] =.
{2,3,4}, while for k = 12 it seems that the best results are obtained with

. I'=={2,3,4,5}; in other words, as bigger is the value of k as more “Resize”

operations should be done to improve the performance of the-branch and .

: reduce method.

4 The DCA approach

In the recent literature a solution algorithm for d.c.” problems have been
proposed by L.T. Hoal An and T.Q. Phong, Many papers dealing with such
an algorithm appeared in the literature of global optimization from both a
theoretical and an applicative point of view [7, 8, 9, 10, 11, 12, 13, 14]. The
interést of the literature of global optimization in that algorithm deserves a
comparison with the branch and reduce approach proposed in this paper, taking
into account that the so called “DCA” method guarantees that just a lo< al
optimum is found.

The “DCA” method deals with a general unconstrained d.c. optun;/atlon'
problem having an objective function of the kind f(x) = c{x) — g(z), with ¢
and g convex functions. Constrained problems are suggested.to be managed
by adding in the objective function a proper penalty function. The method is -
based on conjugacy and duality theory of d.c. programming. Such a general
method can be specified for the class of programs’ considered in this paper as
deseribed in the following procedure “DCA()

Pmcedure DCA(mputs P outputs Opt, OptVal)
fix the tolerance parameter ¢ > §;
detérmine the starting vectors &, § € R* such that Vi € {1,...,k}:

641- = min{dT:ﬂ} and f3; = max{_dfaz}

determine a starting te&slbie pomt 2% and set ¢ := 0;
repeat
t=1t-1
choose w 6 89{:';* 1Y and set z* = arg mmxcx{c(x) ~wlz}
until W<eor%—1—ﬁge
Opt := 2t and OptVal == f(z*);
end proc.

Notice that in the case g(z) is differentiable then dg(z*=1) = {Vg(z*~")}
and hence in procedure “DCA()” we have w = Vg(z*™?).

Procedure DCA{)” has been computatzonally compatred with the procedure
“DeBranch{)” previously proposed. Since “DCA{)” guarantees just a local op-
timum, it has been compared also with the “fmincon” MatLab function. We

cons;dered problems with n = 15 variables, m = 15 inequality constraints,
box constramts l < r < u no equality constraints and objective function
flzy = TQ’E + g7z — Z M(dfz + d9)*, with k = 10 and Q € R™™

symmetllc and positive seml-cieﬁmte The problems have been randomly gen-
erated as described in Section 3. For the various instances 5000 randomly gen-
erated problems have been solved. The average CPU time needed to solve

il
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