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Abstract

Small area estimation is conventionally concerned with the estimation of small area averages and totals. More
recently emphasis has been also placed on the estimation of poverty indicators and of key quantiles of the small area
distribution function using robust models for example, the M-quantile small area model (Chambers and Tzavidis,
2006). In parallel to point estimation, Mean Squared Error (MSE) estimation is an equally crucial and challenging
task. However, while analytic MSE estimation for small area averages is possible, analytic MSE estimation for
quantiles and poverty indicators is extremely difficult. Moreover, one of the main criticisms of the analytic MSE
estimator for M-quantile estimates of small area averages proposed by Chambers and Tzavidis (2006) and Chambers
et al. (2009) is that it can be unstable when the area-specific sample sizes are small.

We propose a non-parametric bootstrap framework for MSE estimation for small area averages, quantiles and
poverty indicators estimated with the M-quantile small area model. Because the small area statistics we consider in
this paper can be expressed as functionals of the Chambers-Dunstan estimator of the population distribution function,
the proposed non-parametric bootstrap presents an extension of the work by Lombardia et al. (2003). Alternative
bootstrap schemes, based on resampling empirical or smoothed residuals, are studied and the asymptotic properties
are discussed in the light of the work by Lombardia et al. (2003). Emphasis is also placed on second order properties of
MSE estimators with results suggesting that the bootstrap MSE estimator is more stable than corresponding analytic
MSE estimators. The proposed bootstrap is evaluated in a series of simulation studies under different parametric
assumptions for the model error terms and different scenarios for the area-specific sample and population sizes. We
finally present results from the application of the proposed MSE estimator to real income data from the European
Survey of Income and Living Conditions (EU-SILC) in Italy and provide information on the availability of R functions
that can be used for implementing the proposed estimation procedures in practice.

Keywords: Chambers-Dunstan estimator, Income distribution, Domain estimation, Poverty mapping, Resampling
methods, Robust estimation

1. Introduction

Sample surveys provide an effective way of obtaining estimates for population characteristics. Estimation, how-
ever, can become difficult when the focus is on domains (areas) with small sample sizes. The term ‘small areas’
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is typically used to describe domains whose sample sizes are not large enough to allow sufficiently precise direct
estimation, i.e. estimation based only on the sample data from the domain (Rao, 2003). When direct estimation is
not possible, one has to rely upon alternative model-based methods for producing small area estimates. Small area
estimation is conventionally concerned with the estimation of small area averages and totals. More recently emphasis
has been also placed on the estimation of poverty indicators and of key quantiles of the small area distribution function
(Molina et al., 2010) using the M-quantile small area model (Chambers and Tzavidis, 2006).

Estimating the precision of small area estimates is both an important and challenging task. Despite the fact that
MSE estimation for M-quantile small area averages has been studied fairly extensively (Chambers and Tzavidis, 2006;
Chambers et al., 2009), MSE estimation for more complex small area statistics e.g. for poverty indicators estimated
with the M-quantile model is unexplored. What is more, analytic MSE estimation for complex statistics is difficult.
For example, all small area statistics we consider in this paper can be expressed as functionals of the population
distribution function, which can be consistently estimated by using the Chambers-Dunstan estimator (Chambers and
Dunstan, 1986). Although the asymptotic behaviour of this estimator was studied by Chambers and Dunstan (1986)
and asymptotic expressions for the bias and the variance were derived by Chambers et al. (1992), the use of these
expressions has proven to be impractical. This motivates the work in this paper in which we propose a unified
non-parametric bootstrap framework for MSE estimation for small area averages, quantiles and poverty indicators -
in particular, for the Head Count Ratio (HCR) and for the Poverty Gap (PG)- estimated with the M-quantile small
area model. The proposed bootstrap is based on resampling empirical or smoothed M-quantile model residuals and
presents an extension of the work by Lombardia et al. (2003) to small area estimation with the M-quantile model. The
choice of a non-parametric bootstrap scheme, instead of a parametric one, is dictated by the fact that the M-quantile
small area model does not make explicit parametric assumptions about the model error terms. This is in contrast to
the conventional unit level area random effects model which assumes that the unit level and area level error terms are
Gaussian. MSE estimation using parametric, instead of non-parametric, bootstrap has been recently used by Sinha
and Rao (2009) for estimating the MSE of the Robust Empirical Best Linear Unbiased Predictor (REBLUP) of the
small area average and by Molina and Rao (2010) for estimating the MSE of small area poverty indicators estimated
by using the Empirical Best Prediction (EBP) approach. '

The complexity of the small area target parameters we consider in this paper is only one way of motivating the
use of bootstrap. There is one additional reason as to why one may consider using a bootstrap MSE estimator. As we
. mentioned above, analytic MSE estimation for M-quantile estimates of small area averages has been already proposed.
Although this cstimator is bias robust against mispecifications of the model assumptions, one of its main criticisms is
that it can be unstable when used with small area-specific sample sizes. Second order properties of MSE estimators
are, however, also very important. For this reason, a further aim of this paper is to also study the stability of the
non-parametric bootstrap MSE estimator and compare this to the stability of corresponding analytic MSE estimators.

The paper is organised as follows. In Section 2 we review the M-quantile small area model and present point
estimation for small area averages, poverty indicators and quantiles. Analytic MSE estimation for estimates of small
area averages is reviewed. Although the emphasis here is on MSE estimation, rather than on point estimation, we
must stress that estimation of poverty indicators under the M-quantile model is presented for the first time in this
paper. However, comparisons with alternative poverty estimation approaches -e.g. the EBP method of Molina and Rao
(2010)- will be discussed elsewhere. In Section 3 we present the non-parametric bootstrap scheme and provide a sketch
of its asymptotic properties. In Section 4 the performance of the proposed MSE estimator is empirically evaluated
under different parametric assumptions for the model error terms and for the small area sample and population sizes.
For the case of small area averages the bootstrap MSE estimator is also compared to the analytic MSE estimator
proposed by Chambers and Tzavidis (2006) and Tzavidis et al. (2010). Using real income data from the EU-SILC
survey in Italy, in Section 5 we apply the bootstrap MSE estimator for computing the accuracy of estimates of income
averages, income quantiles and poverty indicators for Provinces in Tuscany. Access to software that implements
the proposed estimation procedures is important for users of small area estimation methods and Section 6 provides
information on the availability of R functions. Finally, in Section 7 we conclude the papér with some final remarks.

2. Small area estimation by using the M-quantile model

In what follows we assume that a vector of p auxiliary variable x;; is known for each population unit / in small
area j = 1,...,m and that values of the variable of interest y are available from a random sample, s, that includes
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units from all the small areas of interest. We denote the population size, sample size, sampled part of the population
and non sampled part of the population in area j respectively by Nj, n;, s; and r;. We assume that the sum over the
areas of N; and n; is equal to N and n respectively. We further assume that conditional on covariate information for
example, design variables, the sampling design is ignorable. -

A recently proposed approach to small area estimation is based on the use of a quantile/M-quantile regression
model (Chambers and Tzavidis, 2006). The classical regression model summarises the behaviour of the mean of a
random variable y at each point in a set of covariates x. Instead, quantile regression summarises the behaviour of
different parts (e.g. quantiles) of the conditioned distribution of y at each point in the set of the x’s. In the linear case,
quantile regression leads to a family of hyper-planes indexed by a real number g € (0, 1). For a given value of g, the
corresponding model shows how the gth quantile of the conditional distribution of y varies with x. For example, for
g = 0.1 the quantile regression hyperplane separates the lower 10% of the conditional distribution from the remaining
90%.

Let us for the moment and for notational simplicity drop subscript j. Suppose that (xiT, vi), i = 1,---,n denotes
the observed values for a random sample consisting of » units, where x‘.T are row p-vectors of a known design matrix
X and y; is a scalar response variable corresponding to a realisation of a continuous random variable with unknown
~ continuous cumulative distribution function F. A linear regression model for the gth conditional quantile of y; given
X; is

0y.(qix) = xi" B(g).
An estimate of the gth regression parameter B(g) is obtained by minimizing
n
> i = xTB@I - DI — X[ B@) < 0) + g6 = x{ B@) > O)]}.
i=1 :

Quantile regression presents a generalization of median regression and expectile regression (Newey and Powell,
1987) a ‘quantile-like” generalization of mean regression. M-quantile regression (Breckling and Chambers, 1988)
integrates these concepts within a framework defined by a ‘quantile-like’ generalization of regression based on influ-
ence functions (M-regression). The M-quantile of order ¢ for the conditional density of y given the set of covariates
x, f(ylx), is defined as the solution MQ,(g|x; ) of the estimating equation f Yoly — MOy(qlx; ) fyIx)dy = 0, where
W, denotes an asymmetric influence function, which is the derivative of an asymmetric loss function p,. A linear
M-quantile regression model y; given x; is one where we assume that

MO, (gixi ) = " By(q). , )

and estimates of 8, (q) are obtained by minimizing

> Py =% B @), @
i=1

Different regression models can be defined as special cases of (2). In particular, by varying the specifications of
the asymmetric loss function p, we obtain the expectile, M-quantile and quantile regression models as special cases.
When p, is the square loss function we obtain the linear expectile regression model if g # 0.5 (Newey and Powell,
1987) and the standard linear regression model if ¢ = 0.5. When p,, is the loss function described by Koenker and
Bassett (1978) we obtain the linear quantile regression. Throughout this paper we will take the linear M-quantile
regression model to be defined by when p, is the Huber loss function (Breckling and Chambers, 1988). Setting the
first derivative of (2) equal to zero leads to the following estimating equations »

D Wy(rigixi = 0,
i=1

where ri; = yi = X! Bu(@), Wqlrig) = 20(s " righlgl(rig > 0) + (1 = @)I(r;g < 0)} and 5 > 0 is a suitable estimate of
scale. For example, in the case of robust regression, s = median|r;,|/0.6745. Since the focus of our paper is on M-type
estimation, we use the Huber Proposal 2 influence function, y(«) = ul(~¢ < u < ¢) + ¢ - sgn(u). Provided that the
tuning constant c is strictly greater than zero, estimates of 8,(¢) are obtained using iterative weighted least squares
(IWLS).



2.1. Estimators of small area averages

Chambers and Tzavidis (2006) extended the use of M-quantile regression models to small area estimation. Fol-
lowing their development (see also Kokic et al., 1997; Aragon et al., 2005), these authors characterize the conditional
variability across the population of interest by the M-quantile coeflicients of the population units. For umnit i/ with values
i and x;, this coefficient is the value 6, such that MQ,(6;|x;; ) = y; The M-quantile coefficients are determined at the
population level. Consequently, if a hierarchical structure does explain part of the variability in the population data,
then we expect units within clusters (domains) defined by this hierarchy to have similar M-quantile coeflicients. When
the conditional M-quantiles are assumed to follow the linear model (1), with B8,(g) a sufficiently smooth function of
¢, Chambers and Tzavidis (2006) suggested a plug in (naive) estimator of the average value of y in area j

A= NS S i Y KRG =1 m, , 3)

€55 i€r;

where (7, is an estimate of the average value of the M-quantile coefficients of the units in area j. The area-specific
M-quantile coefficients, ;, can be viewed as pseudo-random effects. Empirical work indeed indicates that the area-
specific M-quantile coeflicients are positively and highly correlated with the estimated random area-specific effects
obtained with the nested error regression small area model. Chambers and Tzavidis (2006) also observed that the
naive M-quantile estimator (3) can be biased, especially in the presence of heteroskedastic and/or asymmetric errors.
This observation motivated the work in Tzavidis et al. (2010). In particular, these authors proposed a bias adjusted M-
quantile estimator for the small area average that is derived by using an estimator of the finite population distribution
function such as the Chambers-Dunstan estimator (Chambers and Dunstan, 1986). The Chambers-Dunstan estimator
of the small area distribution function is of the form

FEP@ = N D 10 s+ n7' D0 I B @) + e < ).

i€s; ker; ies;

Estimates of 6; and B,(§;) are obtained following Chambers and Tzavidis (2006) and ¢; = y; ~ x,TBw(@ ;) are model
residuals. The M-quantile bias-adjusted estimator of the average of y in small area j is then defined as

-+ 00
;0 = f y dF5P()
N | @)

:N;'[Zy,-+zyi+(l——fj)2ei].

IESJ IGTJ l€SI

where f; = an;’ is the sampling fraction in area j and §; = xirﬁw(ffj), i € rj. The bias correction in (4) means
that this estimator has higher variability than (3). Nevertheless, because of its bias robust properties, (4) is usually
preferred, over the naive M-quantile estimator, in practice. Finally, as we will also see in the next section, by using
the Chambers-Dunstan estimator one can define a general framework for small area estimation that extends beyond
the estimation of small area averages. ‘

Analytic MSE estimation for M-quantile estimators of small area averages is described in Chambers and Tzavidis
(2006) and Chambers et al. (2009). In particular, Chambers et al. (2009) proposed an analytic mean squared error
estimator that is a first order approximation to the mean squared error of estimator (4). These authors noted that since
an iteratively reweighted least squares algorithm is used to calculate the M-quantile regression fit at 8;,

B0 =XIW,X)'XTW, y,

where X and y; denote the matrix of sample x values and the vector of sample y values respectively, and W, denotes
the diagonal weight matrix of order n that defines the estimator of the M-quantile regression coefficient with ¢ = §;.
It immediately follows that (4) can be written

5 CD

P =wlys, (5

where w,, = (w;;) = n]f’ Ay +(1 - N;’nj)WjXS(XZWjXS)"(iZ,j —X;,) with A; denoting the n-vector that ‘picks out’

the sample units from area j. Here X, and X, denote the sample and non-sample means of x in area j. Also, these
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weights are ‘locally calibrated’ on x since

sz]xf“ xx +(1 “f;)(xrj x:,) “xj

i€s
A first order approximation to the mean squared error of (5) then treats the weights as fixed and applies standard meth-
ods of robust mean squared error estimation for linear estimators of population quantities (Royall and Cumberland,
1978). With this approach, the prediction variance of CD is estimated by '

Var(§”) = Z D Auig(vi = xBy 6", ©)

g=1 i€sg

where A;;, = [(w;; ~ 1) + (n} - l) (N -nplg = H+ w,gl(g # j). Empirical studies show that the analytic MSE
estimator (6) is bias robust against misspecification of the model (Chdmbers et al., 2009). However, its main criticism
is that it can be unstable especially with small area-specific sample sizes.

2.2. Estimators of small area poverty indicators and quantiles

Although small area averages are widely used in small area applications, relying only on averages may not be
very informative. This is the case for example in economic applications where estimates of average income may not
provide an accurate picture of the area wealth due to the high within area inequality. Our goal in this section is to also
express quantiles and specific poverty indicators as functionals of the Chambers-Dunstan estimator of the population

distribution function.
With regards to the estimation of small area quantiles, an estimate of quantile ¢ for small area j is the value §(j; ¢)
obtained by a numerical solution to the following estimating equation

g
fl FC"(t) = 4. @

Estimating poverty indicators at disaggregated geographlcal levels is also 1mportant In this paper we focus on the
_estimation of the incidence of poverty or Head Count Ratio (HCR) and of the Poverty Gap (PG) as defined by Foster
et al. (1984). Denoting by  the poverty line, different poverty indicators are defined by using

Fa.i=(%)°1(yisr) i=1,...N.

The population poverty indicators in small area j, F, j, can then be decomposed as follows,
Faj= N[ Fai+ ) Fail
i€s; i€r;

In particular, setting @ = 0, Fo; defines the HCR while setting @ = 1 Fy; defines the PG in small area j. Hence,
one approach for estimating the HCR in small area j is by using the Chambers-Dunstan estimator of the distribution
function and the M-quantile model for predicting for out of sample units as follows, :

Fo, = N D 1o < Do+ ont Y Y IGBG) + e

iesy ker; ies;

IA

t)]. ®)

Similarly, an estimator of the poverty gap for area j

Fij= NII[Z(%&)I(% <)

b,
! ;; Xkﬁw( )= )I( Tﬁw(g Y+e < t)] (9)

In practice the HCR and PG for area j can be estimated by using a Monte Carlo approach. The estimation procedure
is as follows:



1 Fit the M-quantile small area model using the sample values y. and obtain estimates 7 s ﬁw(@) ), of 6; and 8,,(6;).

2 Draw an out of sample vector using
»” T D *
Ve = xk,@w(Oj) +e;, kerj,
where e;,k € rjisa vector of size N; — n; drawn from the empirical distribution function of the estimated
M-quantile model residuals.

3 Repeat the process H times. Each time combine the sample data and out of sample data for estimating Fo ; and
Fyj.

4 Average the results over H simulations.

‘The M-quantile approach for estimating poverty indicators is similar in spirit to the EBP approach proposed by Molina
and Rao (2010). Note for example that y}, k € r; is generated using x{ﬁw(ﬂj) i.e. from the conditional M-quantile
model, where § ; plays the role of the area random effects in the M-quantile modelling framework.

3. Non-parametric bootstrap MSE estimation

All small area target parameters we presented in Section 2 have been expressed as functionals of the Chambers-
Dunstan estimator of the population distribution function. Unlike MSE estimation for small area averages, analytic
MSE estimation for small area poverty indicators and quantiles is complex. In this section we present a nonparametric
bootstrap framework for MSE estimation of small area parameters estimated with the M-quantile model and the
Chambers-Dunstan estimator.

Let us start with the M-quantile small area model

yij = X[ By 0)) + &
where B,,(6,) is the unknown vector of M-quantile regression parameters for the unknown area-specific M-quantile
coefficient 8;, and g;; is the unit level random error term with distribution function G for which no explicit parametric
assumptions are being made. Using the sample data we obtain estimates éj, ﬁw(éj), of 8; and B,(6;), and estimated
model residuals e;; = y;; — xfjﬁw(éj). The target is to estimate the small area finite population distribution function,
or to be more precise a functional of this distribution function 7, by using the Chambers-Dunstan estimator and the
M-quantile small area model,

FSPy = N7 D 10 <0+ Y 66— xIB, @) (10)
i€s; ker;
where G(u) is the empirical distribution, Gw) = nj‘.I Ziesj I(e;; < u), of the model residuals ¢;;. Using (10), we obtain
estimates of the small area target parameters we presented in Section 2, which we collectively denote by #.
Given an estimator G, () of the distribution of the residuals G(u) = Pr(g < u), a bootstrap population, consistent

with the M-quantile small area model, 2* = {y; X ;}, can be generated by sampling from Gese(1) to obtain ei‘j,

vi=xiB, @+, i=1.. N, j=1l...m

For defining G.«(1) we consider two approaches: (1) sampling from the empirical distribution function of the model
residuals or (2) sampling from a smoothed distribution function of the model residuals. For each of the two above
mentioned approaches, sampling can be done in two ways namely, by sampling from the distribution of all residuals
without conditioning on the small area (unconditional approach) or by sampling from the distribution of the residuals
within small area j (conditional approach). The empirical distribution of the residuals for the unconditional approach
is

Geay=n"' Y D" Moy =2, < 1), (11)

j=1 ies;
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where 2, is the sample mean of the residuals e;;, while for the conditional approach the empirical distribution is

Gty = 17" D Hei; =2, < 1),

€s;

where &;, is the sample mean of the residuals in area j. The corresponding smoothed estimators of the distribution of
the residuals for the unconditional and the conditional approaches are respectively

Geg =n"" K(h'(t—e;; + &), (12)
}

j=1 ies;

and
G (=5 Y K(h7'(t = eij +2,),
i€s;

where i > 0 (or h;) is a smoothing parameter and K is the distribution function corresponding to a bounded sym-
metric kernel density k. Hence, there are four possible approaches for defining ;. We suggest, however, using the
unconditional, empirical or smoothed, approach. The reason is that in applications of small area estimation sampling
from the conditional distribution would rely on potentially a very small number of data points which can cause G.5(?)
to be unstable. Let us now define the finite distribution function for the bootstrap population as follows

Fin = N[ 107 Sf)+21(y” <n)

IGSJ IETJ

The bootstrap population distribution function can be estimated by selecting a without replacement sample from the
bootstrap population and by using the Chambers-Dunstan estimator

FoPay = N7 D 107, <0+ ) 6= x[B 6 ), ' (13)

i€s; ker;

where B;((:)*.) are bootstrap sample estimates of the M-quantile model parameters and G* = n;] Dies; 1(e]; < u). Using
(13) we obtain bootstrap estimates, #*, of the bootstrap population small area parameters 7°.

The steps of the bootstrap procedure are as follows: starting from sample s, selected from a finite population Q
without replacement, we fit the M-quantile small area model and obtain estimates of 8; and 8,(6;) which are used to ‘
compute the model residuals. We then generate B bootstrap populations, Q*?, using one of the previously described
methods for estimating the distribution of the residuals, G(x). From each bootstrap population, Q, we select L
bootstrap samples using simple random sampling within the small areas and without replacement in a way such that
n’ = n;. Using the bootstrap samples we obtain estimates of 7. Bootstrap estimators of the bias and variance of the

‘] .
estimated target small area parameter, %, derived from the distribution function in area j are defined respectively by

B L
Bias(t) = B7'L7' ) ) (- 7t)

b=1 I=1

B L

Var(#;) = B L™ Z Z el *b’
I=1

where T*b is the small area parameter of the bth bootstrap population, ‘?*bl is the small area parameter estimated by

using (13) with the /th sample of the bth bootstrap population and 73" = L‘ Sk, #+%. The bootstrap MSE estimator
of the estimated small area target parameter is then defined as



3.1. A note on asymptotic properties

The asymptotic properties of the smoothed bootstrap method, under a linear model, have been studied by Lom-
bardia et al. (2003). Here we comment on the validity of the assumptions by Lombardia et al. (2003) under the
M-quantile model. To start with, we note that the superpopulation model assumed by Lombardia et al. (2003) is a
special case of the linear M-quantile model when a squared loss function is used in (2) and g = 0.5 (see Breckling and
Chambers, 1988; Newey and Powell, 1987). Under this model and using the assumptions on page 371 of their paper
Lombardia et al. (2003) showed that the smoothed bootstrap estimator F*€D(2) is consistent, in that its behaviour rel-
ative to the smoothed bootstrap population distribution function F*(r) is identical to the relationship between FCP(p)
and the corresponding population distribution function F(r). The asymptotic behaviour of the latter was studied by
Chambers et al. (1992) under assumptions relating to the superpopulation model density and the asymptotic behavior
of the sampling fraction (H1-H3 on page 371 of Lombardia et al. (2003)). Moreover, Lombardia et al. (2003) show
that the smoothed bootstrap estimator is asymptotically normally distributed. The assumptions made by Lombardia
et al. (2003) relate to the kernel function, the bandwidth parameter and the density g of G. In our case the assumptions
about the kernel density & and the bandwidth parameter A (K1 and K2 on page 371 of Lombardia et al. (2003)) hold
and in our empirical evaluations we use the same kernel function and bandwidth selection method as those used by
Lombardia et al. (2003). In addition, the assumptions about the superpopulation model and the asymptotic behavior
of the sampling fraction (H1 to H4 on page 371) are reasonable assumptions also under the M-quantile linear model.
Finally, conditional on the small areas the assumption of independence of the errors is also reasonable.

4. Empirical evaluations

In this section we use model-based Monte-Carlo simulations to empirically evaluate the performance of the boot-
strap MSE estimator (14) when used to estimate the MSE of the M-quantile estimators of (a) the small area average
(4), (b) the small area quantile (7), (c) the head count ratio (HCR) (8) and (d) the poverty gap (PG) (9). Moreover,
since analytic MSE estimation for M-quantile estimates of small area averages is possible, the proposed bootstrap
MSE estimator is also contrasted to the corresponding analytic MSE estimator (6) both in terms of bias and stability.
The behaviour of the alternative MSE estimators is assessed under two different parametric assumptions for the model
error terms namely, Normal and Chi-square errors, and two scenarios for the area-specific sample and population

“sizes. Finally, we also present results on how well estimators of small area averages, quantiles and poverty indicators
estimate the corresponding population parameters.

In what follows subscript j identifies small areas, j = 1,...,m and subscript i identifies units in a given area,
i = 1,...,n;. Population data Q = (x,y) in m = 30 small areas are generated under two parametric scenarios for
the model error terms. Population data under the first parametric scenario were generated by using a unit level area
random effects model with normally distributed random area effects and unit level errors as follows

Yij = 3000 - 150 ¥ X+ Y+ &,

where y; ~ N(0,200%), &; ~ N(0,800%), x;; ~ N(u,, 1), #; ~ U[4,10] and y; was held fixed over simulations.
Similarly, under the second parametric scenario population data were generated using

yij = 11 —x,'j+')/j+€,'j,

where now y; ~ x*(1), &; ~ x*(6) and x;; was generated as in the first scenario but with u; ~ U[8, 11].

For each Monte Carlo simulation a within small areas random sample is selected from the corresponding generated
population. Two scenarios for the population and sample sizes are investigated. Under the first scenario (denoted in
the tables of results by A = 0) the total population size is N = 8400 with small area-specific population sizes ranging
between 150 < N; < 440. The total sample size is n = 840 and the area-specific sample sizes are ranging between
15 < n; < 44, Under the second scenario (denoted in the tables of results by 4 = 1) the total population size is
N = 2820 with area-specific population sizes ranging between 50 < N; < 150 and the total sample size is n = 282
with area-specific sample sizes ranging between 5 < n; < 15. »

Using the sample data we obtain point estimates of small area averages with (4), of the 0.25, 0.50 and 0.75 per-
centiles of the distribution of y with (7) and of the HCR and PG with (8) and (9) respectively. For small area averages
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MSE estlmatton is performed usmg both the analytic MSE (6) and the bcotstrap MSE estimator (14) For estimators
of small area percentiles and poverty indicators MSE estimation is performed using the bootstrap MSE estimator (14).
Wa run in total H = 500 Monte-Carlo simulations. For bootstrap MSE estimation we used one bootstrap population
= 1) from which we drew 400 bootstrap samples (L = 400). Because the evaluation of the bootstrap MSE estima-
tor is taking place within a Monte-Carlo framework, the generation of a new Monte-Carlo population and of a new
bootstrap population in each iteration is imitating the generation of many bootstrap populations. For the bootstrap :
MSE estimation we used the unconditional approach with both the empirical (11) and ‘smoothed (12) versions of the
error-distribution. For the smoothed case, we use the Epanechnikov kernel density, k() = (3 141 = 1®)KJu) < 1),
where the smoothmg parameter A in (12) was chosen so that it mammlzes the cross-validation criterion suggested by -
Bowman et al (1998). That is, h was chosen in order to minimize

cwh)w‘i}:z f [I(e,j—~e,) <t- G~,(t)] dr,

F=1 ies;

where G-(t) is the version of G(t) that omits sample unit { (Li and Racme {2007), section 1.5). To compute the smooth-
ing parameter A in (12) we used the np package (Hayfield and Racine, 2008) in the R envmmment {R Development-
Core Team, 2010). i
Denoting by 7; the true and unknown parameter and by %; the corresponding estlmate the performance of MSE
estimators is evaluated using the relative bias and Root MSE (RMSE) defined by -

}eBIAS (% )= B! i (lnTi)
J L P Tj "

- 2, a2

RMSE(t)) = [H™ ) (#y — 1]
h=1

" Finally, coverage rates of 95% confidence intervals constructed by using'the bootstrap MSE estimator are computed.
Although the detailed results of coverage rates are not reported in the tables of results, we do provide summary results
of coverage rates in our commentary. '

4.1. Results for small area averages

Table 1 presents the results for MSE estimation of M-quannlc small area averages obtained with (4), under the
two parametric scenarios. and the two scenarios for the area-specific sample and population sizes, using the analytic
MSE estimator {6) and the bootstrap MSE estimator (14), For bootstrap estimation we used the smoothed uncon-
ditional approach for estimating the distribution of the residuals. Results from the implementation of the empirical
unconditional approach have been also produced but in the economy of space are not reported here. The table reports
‘the distribution over areas of the empirical, Monte Carlo RMSE, the estimated RMSE, the relative bias (%) of the
estimated RMSE and the RMSE of the RMSE estimators, which is used for assessing the stability of the bootstrap
and analytic MSE estimators.

These results suggest that for all scenarios we studied the analytlc and the bootstrap MSE estimators track very
well the empirical MSE and have on average reasonably low relative bias. However, the bootstrap MSE estimator
appears to be notably more stable. In particular, the RMSE of the bootstrap MSE estimator is approximately half
that of the analytic estimator (scenario with A = 0) and differences become more pronounced for the smaller area
sample sizes (scenario A = 1). Therefore, there is evidence to suggest that the bootstrap MSE estimator is more
stable than the analytic MSE estimator proposed by Chambers and Tzavidis (2006) and hence it should be preferred
in practical applications. The results using the empirical distribution, instead of the smoothed distribution of the
residuals, are consistent with the results we present here. Figure 1 present averages, over sxmulatmns of true and
estimated, using (4), small area means. In the economy of space we present results only for the x? scenario and the
Normal scenario with the smaller area sample sizes (1 = 1). These results show that estimates of small area averages
are close to population values. The results for other scenarios are consistent with the ones we present here. Results
for coverage rates of 95% confidence intervals for estimates of small area averages constructed by using the bootstrap
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Averages, Smoothed Approach ~ Min. Ist Qu. Median Mean 3rd Qu. Max.
Normal scenario, 4 = 0

True 1134 125.8 147.6 147.9 168.6 189.5
Estimated(Analytic) 1134 125.5 140.4 146.1 165.1 190.3
Estimated(Bobtstrap) 112.6 125.4 140.0 147.5 167.9 193.8
Rel. Bias(%)(Analytic) -10.08 -3.35 -1.627 -0.988 0.594 8.59
Rel. Bias(%)(Bootstrap) -10.15 -2.709 -0.908 -0.189 1.802 11.19
RMSE(Analytic) 11.23 15.69 21.540 22420 28.400 39.82
RMSE(Bootstrap) 6.858 8278 10.700 - 11.040  12.280 20.16
Normal scenario, 4 = 1

True ‘ 177.6 2195 2494 255.6 291.1 3333
Estimated( Analytic) 188.3 206.5 232.5. 2372 262.6 298.3
Estimated(Bootstrap) 186.5 208.9 236.1 245.3 2734 324.1
Rel. Bias(%)(Analytic) -16.29 -10.06 -6.24 -6.53 —4.65 6.05
Rel. Bias(%)(Bootstrap) -10.26 -5.78 —4.52 -3.78 -2.06 5.03
'RMSE(Analytic) 36.10 4598 60.510 67.160 84570 117.700
RMSE(Bootstrap) 1476 21460 27.650 28.170  34.050 45.850
v? scenario, A = 0

True 0.506 0.564 0.645 0.644 0.718 0.845
Estimated(Analytic) 0.484 0.542 0.614 0.634 0.717 0.822
Estimated(Bootstrap) 0.488 0.542 0.607 0.639 0.728 0.841
Rel. Bias(%)(Analytic) -11.24 -6.043 -1.665 -1.505 2.587 9.16
Rel. Bias(%)(Bootsfrap) -8.323 -4.866 —0.323 -—0.818 2.448 12.22
RMSE(Analytic) 0.0804 0.0972 0.1246 0.1346  0.1707 0.2162
RMSE(Bootstrap) 0.0353 0.0483 0.0587 0.0605 0.0714  0.1028
x? scenario, A = |

True 0.752 0.936 1.059 1.098 1.271 1.494
Estimated(Analytic) 0.789 0.890 1.005  1.019 1.122 1.269
Estimated(Bootstrap) 0.812 0.915 1.025 1.069 1.192 1.415
Rel. Bias(%)(Analytic)' -15.04 -9.198 -7.173 -6.531 -3.994 7.424
Rel. Bias(%)(Bootstrap) —7.241 -4934 -1836 -2478 -0.773 7.953
RMSE(Analytic) ' 0.2156 0.2642 0.328 03693 0.4524  0.6686
RMSE(Bootstrap) 0.0846 0.1089 0.1344 0.1482 - 0.1781 0.2729

Table 1: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of the estimated RMSE (analytic and bootstrap), of the
relative bias (%) of the RMSE estimators and of the RMSE of the RMSE estimators for M-quantile estimators of small area averages. Bootstrap
results are produced using the unconditional smoothed approach.
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MSE estimator are on average close to 95% for both parametric scenarios and for both scenarios of the area sample
and population sizes.

4.2. Results for small area poverty indicators and percentiles

Tables 2 and 3 present results on the performance of the bootstrap MSE estimator (14) when used to estimate
the MSE of estimates of HCR and PG obtained with (8) and (9) respectively. Bootstrap MSE estimation is imple-
mented using the smoothed unconditional approach for estimating the distribution of the residuals. Results from the
implementation of the empirical unconditional approach have been also produced but in the economy of space are
not reported here. The tables report the distribution over areas of the empirical, Monte Carlo RMSE, the estimated
RMSE, the relative bias of the bootstrap MSE and the RMSE of the RMSE estimator, which is used for assessing the
stability of the bootstrap MSE estimator.

HCR, Smoothed Approach Min. Ist Qu.  Median Mean 3rd Qu. Max.
Normal scenario, A = 0 )
True 0.023 0.034 0.036 0.041 0.051 0.064

Estimated 0.018 0.027 0.032 0.035 0.043 0.062
Rel. Bias(%) -24.320 -18.080 —14.130 -14.220 -10.850 -3.635
RMSE 0.009 0.012 0.0129 0.013 0.0141 0.0173
Normal scenario, 4 = 1

True 0.032 0.050 0.058 0.063 0.076 0.104
Estimated 0.027 0.046 0.053 0.059 0.073 0.102
Rel. Bias(%) -20.700 -11.680 —7.849 -7.665 -2.307 5.204
RMSE 0.0136 0.019 0.0217 0.0217 0.0243  0.0293
v2 scenario, 2 = 0 :

True 0.053 0.057 0.062 0.063 0.069 0.079
Estimated 0.050 0.052 0.056 0.059 0.065 0.076
Rel. Bias(%) -19.650 —8.425 -7.186 -6.936 -3.731 1.599
RMSE 0.0135 0.0148 0.0158 0.0163 0.0173 0.0223
¥” scenario, A = 1

True 0.076 0.084 0.093 0.096 0.107 0.127
Estimated 0.078 0.085 0.094 0.096 0.107 0.126
Rel. Bias(%) -5.036 -1.139 0.121 0.195 2.190 5.811
RMSE i 0.0146 0.0165 0.0181 0.0188 0.0199 0.0288

Table 2: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of the bootstrap RMSE and of the relative Bias (%) and
RMSE of the bootstrap RMSE estimator for the HCR. Results are produced using the unconditional smoothed approach.

From tables 2 and 3 we see that the estimated RMSE for HCR and PG tracks well the entire distribution of the
empirical RMSE, both for the Normal and ¥? scenarios. For the normal scenario, these results also show evidence of
substantial relative bias ranging on average between (-16% , - 7.6%), which may be due to the large values of the error
variance components we used for generating the Monte-Carlo population creating some instability when estimating
an indicator. For the chi-square scenario the relative bias is substantially lower ranging on average between (-6.9% ,
-0.19%). In any case the results on the relative bias must be interpreted with care since the values of the MSEs are
small and hence even small differences will result in substantial relative bias. This is the case even with values that
agree up to the second decimal place. As expected, the variability of the RMSE estimator is greater when the sample
size is smaller, however, given the decrease in the area sample sizes (see scenario 4 = 1) the stability of the MSE
estimator remains satisfactory. These stability results will be only effectively evaluated when compared to alternative
MSE estimators of the HCR and PG. Currently, the only alternative available is the parametric bootstrap proposed by
Molina and Rao (2010). Figure 1 present averages, over simulations, of true and estimated, using (8) and (9), small
area HCRs and PGs. In the economy of space we present results only for the x* scenario and the Normal senario with

11



PG, Smoothed Approach Min. IstQu.  Median Mean 3rd Qu. Max.
Normal scenario, 4 = 0

True 0.008 0.013 0.015 0.018 0.024 0.038
Estimated : 0.006 0.011 0.012 0.015 0.019 0.034
Rel. Bias(%) ~28200 -20360 =16.610 -16.990 —13.580 —7.395
RMSE 0.0034 0.0054 0.006 0.0066 0.0078 0.0115
Normal scenario, 4 = 1

True 0.011 0.020 0.024 0.028 0.036 0.058
Estimated 0.009 0.017 0.021 0.025 0.032 0.056
Rel. Bias(%) —22200 -15.000 -11.310 -12.060 -9.022 —1.492
RMSE 0.0051 0.0093 0.0111 0.0116 0.0149 0.0176
¥~ scenario, A = 0

True 0.049 0.056 0.062 0.062 0.067 0.079
Estimated 0.046 0.052 0.056 0.058 0.065 0.075
Rel. Bias(%) -16.430 -7.964 -5.567 -5.587 -2.205 2.723
RMSE 0.0128 0.0137 0.0143 0.0148 0.0153 0.0214

" x? scenario, A = | .

True 0.073 0.081 0.093 0.094 0.103 0.120
Estimated 0.071 0.082 0.093 0.095 0.106 0.124
Rel. Bias(%) -5.595 -1.016 0.072 0.261 2.476 5.046
RMSE 0.0146 0.0168 0.0188 0.0195 0.0214  0.0305

Table 3: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of the bootstrap RMSE and of the relative Bias (%) and
RMSE of the bootstrap RMSE estimator for the PG. Results are produced using the unconditional smoothed approach.

the smaller area sample sizes (1 = 1). These results show that estimates of small area HCRs and PGs are close to
population values. The results for other scenarios are consistent with the ones we present here.

In tables 4, 5 and 6 we present MSE estimation results for the percentiles of y and more specifically for g =
0.25.0.5,0.75 estimated with (7). The tables report the distribution over areas of the empirical, Monte Carlo RMSE,
the estimated RMSE, the relative bias of the bootstrap RMSE and the RMSE of the RMSE estimators, which is
used for assessing the stability of the bootstrap MSE estimator. Bootstrap MSE estimation is implemented using the
smoothed unconditional approach for estimating the distribution of the residuals. Results from the implementation
of the empirical unconditional approach have been also produced but in the economy of space are not reported here.
The bootstrap MSE estimator tracks well the distribution of the empirical MSE of the three percentiles under both
parametric scenarios and both scenarios for the small area sample sizes. Some underestimation is present but in terms
of percentage relative bias this underestimation is not excessive. Figure 2 presents averages, over simulations, of true
and estimated, using (7), small area percentile estimates of g = 0.25,0.5, 0.75. In the economy of space we present
results only for the x° and Normal scenario with the smaller area sample sizes (4 = 1). These results show that
estimates of small area percentiles are close to population values. The results for other scenarios are consistent with
the ones we present here.

Coverage rates of 95% confidence intervals for estimates of small area quantiles constructed by using the bootstrap
MSE estimator range on average between 93% to 95% for both parametric scenarios and for both scenarios of the
area sample and population sizes. The coverage rates of 95% confidence intervals for estimates of small area poverty
indicators (HCR and PG) constructed by using the bootstrap MSE estimator range on average between 90% to 94%
for both parametric scenarios and for both scenarios of the area sample and population sizes.

The results we presented in the section indicate that the bootstrap MSE can be reliably used for estimating the
MSE of M-quantile small area averages, percentiles and poverty indicators. One way of potentially improving the
performance of the bootstrap MSE estimator is by generating more than one bootstrap population. Generating more
than one bootstrap population within a Monte-Carlo simulation study, however, significantly increases the computa-
tional effort. Having said this, when the proposed bootstrap MSE estimator is used in applications with real data we
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Q25, Smoothed Approach ~ Min. Ist Qu. Median Mean 3rdQu. Max.
Normal scenario, 4 = 0

True 15420  172.90 195.6 201.8 2333 261.0
Estimated ' 151.50 169.10 189.8 198.6 2269 2604
Rel. Bias(%) -6.191 -3.562 -1.256 -1.605 -0.075 2.771
RMSE 15.120 19320 22450 23.610 28320 32.170
Normal scenario, 4 = 1

True 247.6 288.1 340.7 344.0 388.6 4475
Estimated 1254.5 280.9 3179 330.7 3689 4424
Rel. Bias(%) -9.946 —6.122 —4.661 =3.707 - —1.499  2.793
RMSE 37.230 45250 54.150 55.190 64.000 78.640
¥* scenario, 1 =0

True 0.435 0.496 0.582 0.591 0.669  0.770
Estimated 0.448 0.500 0.560 0.589 0.673  0.772
Rel. Bias(%) -9965 -2371 -0.116 -0.076 2.061 7.073
RMSE 0.0406 0.0497 0.0593 0.0632 0.0778 0.0909
v* scenario, 4 = 1

True 0.757 - 0.881 1.035 1.037 1.168 1.440
Estimated 0.754 0.850 0.969 1.007 1.121 1.350
Rel. Bias(%) -8.593 -=5.135 -1.655 -2714 -0933 4.078
RMSE 0.0892 0.1176  0.1537 0.1478 0.1736  0.2227

Table 4: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of the bootstrap RMSE and of the relative Bias (%) and the
RMSE of the bootstrap RMSE estimator for the 0.25 percentile. Results are produced using the unconditional smoothed approach.

Q50, Smoothed Approach Min. Ist Qu. Median Mean 3rdQu. Max.
Normal scenario, 4 = 0

True 13590 157.40 182.80 184.20 212.8 242.4
Estimated 137.20 15270 17090 179.10 203.5 234.6
Rel. Bias(%) -8.635 —-4.863 -3489 -2.743 -0416 4.99
RMSE 12.970 16240 19.980 20.380 24270 27.85
Normal scenario, A = 1

True 232.0 266.2 307.3 313.9 351.2 414.7
Estimated 221.3 246.1 277.7 290.5 3244 383.1
Rel. Bias(%) -13.48 -9.774 -7.326 -7.272 5344 1.019
RMSE 31.35 38.810 47.620 48710 56.740 72.920
7 scenario, 4 = 0 .

True 0.546 0.626 -0.716 0.730 0.827 0.958
Estimated 0.541 0.602 0.675 0.707 0.805 0.929
Rel. Bias(%) -10.210 -4987 -3.212 -3.069 -1.707 4.202
RMSE 0.0474 0.0598 0.0802 0.0804 0.0916 0.1129
¥* scenario, A = 1

True 0.926 1.071 1.234 1.259 1.397 1.680
Estimated 0.879 0.973 1.113 1.155 1.286 1.544
Rel. Bias(%) -13.71 -9.968 -8.144 -8.165 —6568 -2.795
RMSE 0.1239 0.1632 0.194 02015 0.2317 0.2935

Table 5: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of the bootstrap RMSE and of the relative Bias (%) and the
RMSE of the bootstrap RMSE estimator for the 0.5 percentile. Results are produced using the unconditional smoothed approach.
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075, Smoothed Approach Min. 1st Qu. Median Mean 3rdQu. Max.
Normal scenario, A = 0

True 151.60 171.90 200.8 204.7 2353 2684
Estimated 150.70  168.00 186.5 197.3 2248  260.4
Rel. Bias(%) -11.44 -6.018 -2.583 -3.553 -1.398 1.712
RMSE 1564 19.210 25.540 24560 28.830 32.750
Normal scenario, 4 = 1

True 270.4 299.3 335.6 348.1 3939  473.6
Estimated 249.3 278.9 312.9  326.6 367.8 4326
Rel. Bias(%) -11.62 -8.069 —6.231 —6.132 —-4508 0.226
RMSE 3845 46.160 52.640 55770 64340 86.540
X7 scenario, A = 0

True 0.802 0.880 1.001 1.024 1.180  1.322
Estimated 0.768 0.846 0.956 1.001 1.137 1.317
Rel. Bias(%) -9.388 —4.126 -3.067 -2.239 0.081 5.385
RMSE 0.0936 0.1029 0.1224 0.1291  0.1519 0.1864
¥° scenario, 4 = 1

True 1.262 1.482 1.659 1.681 1.873  2.187
Estimated 1.246 1.366 1.522 1.573 1.748  2.007
Rel. Bias(%) -11.13 -8.644 -7.011 -6308 -4.609  2.358
RMSE 0.1942 02372 0.2691 02713  0.3092 0.3556

Table 6: Distribution over areas and simulations of the empirical, Monte Carlo RMSE, of the bootstrap RMSE and of the relative Bias (%) and the
RMSE of the bootstrap RMSE estimator for the 0.75 percentile. Results are produced using the unconditional smoothed approach.

suggest generating B € [50, 100] bootstrap populations.

5. An Application: Estimating the income distribution and poverty indicators for provinces in Tuscany

The aim of this section is to provide a picture of the economic conditions in Tuscan provinces. This is achieved
by computing province-specific estimates of average equivalised income, of key percentiles of the income distribution
function (25th, 50th, 75th) and of two poverty indicators namely, the HCR and PG as well as corresponding MSE
estimates. Small area estimation is performed by using data from the 2006 European Survey on Income and Living
Conditions (EU-SILC) in Italy and the 2001 Census microdata for the region of Tuscany. Provinces within regions are
unplanned domains and the sample sizes for provinces in Tuscany range from 59 households in the Grosseto province
to 445 households in the Florence Province with an average sample size of 149 households (median 123 households).
The population of households in the different provinces, using 2001 Census data, ranges from 80,810 households in
the province of Massa-Carrara to 376,300 in the province of Florence with the total number of households in Tuscany
being 1,388,252.

We start by first building a small area working model that is estimated using the EU-SILC survey data. The
response variable is the household equivalized income. The explanatory variables we considered are those that are
common to the survey and Census datasets. This includes explanatory variables that relate to the head of the household
namely, gender, age, occupational status and years in education, and explanatory variables that relate to the household
namely, the ownership status of the house and the number of household members. Fitting a two-level (households
within provinces) random effects model using the above explanatory variables and performing residual analysis reveals
departures from the assumed normality of the level 1 and level 2 error terms. For this reason, we decided to use an
oultier robust model, in this case the M-quantile small area model (see Section 2). A logarithmic transformation of
income is not easily applicable since there are negative income values in our survey data. Small area estimates of
average household income are derived using (4). Small area estimates of the three income percentiles are derived
by using (7). Finally, estimates of HCR and PG are obtained by using (8) and (9) respectively. For estimating the
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Figure 3: Estimates of the income percentiles for provinces in Tuscany

PROVINCE MEAN RMSE HCR RMSE PG RMSE
MASSA 1412826 664.84 0280 0.039 0.117 0.022
LUCCA 15867.69  766.81 0239  0.026 0.094 0.015
PISTOIA 18980.76 1119.33 0.195 0.019 0.073  0.011
FIRENZE 19184.92  498.35 0.166 0.012 0.061  0.007
LIVORNO 17875.01 919.41 0.193  0.020 0.075 0.012

PISA 18550.16  876.38 0.175  0.018 0.065 0.010
AREZZO 1866597 1014.42 0.182  0.018 0.068 0.010
SIENA 2022898 111391 0.161  0.023 0.060 0.012
GROSSETO 16152.47 1151.83 0.231 0.029 0.093  0.019
PRATO 17702.87 63274 0.172 0.021 0.062 0.011

Table 7: Point estimates and corresponding RRMSEs of small area averages, HCRs and PGs for Provinces in Tuscany

poverty indicators the poverty line is computed at regional level as 60% of the median household equivalised income.
Corresponding estimates of the MSE are obtained by using the bootstrap MSE estimator (14), which is implemented
by generating B = 50 bootstrap populations and selecting L = 100 bootstrap samples from each bootstrap population.

The results are summarized in tables 7 and 8 and in figures 3 and 4, which present point estimates and correspond-
ing estimates of RMSE. A clear picture about the wealth of Tuscan provinces emerges with the provinces of Siena
and Florence being the wealthiest and the provinces of Massa-Carrara and Lucca the least wealthy (darker colors
indicate higher wealth and lower poverty). In particular, the provinces of Massa-Carrara and Lucca have clearly the
Jowest average equivalised household income whereas the provinces of Siena and Firenze the highest. Massa-Carrara
and Lucca also have the highest number of households below the poverty line whereas Siena and Firenze the lowest
and this picture remains the same when we look at the spatial distribution of PG. Examining the percentiles of the
province-specific income distributions we note that estimates of average income are higher than estimates of median
income, which highlights the right asymmetry of the income distributions. Using the percentile estimates of income
we can draw some further conclusions. Looking at the average income and the HCR we note that the province of
Grosseto is among the least wealthy Tuscan provinces. However, when examining the estimate of the third quartile
for Grosseto we note that this is similar to the estimate of the third quartile of Arezzo, which is one of the wealthiest
provinces. This indicates the presence of inequality in Grosseto. Some evidence of inequality also exists for the
provinces of Livorno and Pisa.
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Figure 4: Estimates of the average income, Head Count Ratio and Poverty Gap for provinces in Tuscany

PROVINCE Ql RMSE Q2 RMSE Q3 RMSE
MASSA 8837.42 71233 13498.69  831.75 18528.25 1164.96
LUCCA 9715.74 640.71 14733.29  690.70 20650.60 1087.89
PISTOIA 11412.26  669.47 16124.78  685.77 2224396 1017.31
FIRENZE 12628.02 33554 17364.81 377.37 2332847  547.68
LIVORNO 11338.34 610.02 16662.83  701.85 22991.71 983.31
PISA 11571.98 618.04 17161.42  681.67 23867.96  989.89
AREZZO . 12205.01 578.72 16724.22  638.74 2210072  949.08
SIENA 12639.00 662.31 18373.53  703.94 25471.22 1087.76
GROSSETO  9924.80 92438 15456.41 1016.58 22069.22 1483.27
PRATO 12779.53  669.54 16968.74  708.72 21796.88 1101.34

Table 8: Point estimates and corresponding RRMSEs of small area quartiles for Provinces in Tuscany



6. R functions for point and MSE estimation

R functions that implement small area estimation with the M-quantile model are available upon request from the
authors. In particular, function mg.sae produces M-quantile estimates of small area averages using (4) and MSE
estimation using the analytic MSE estimator (6). Function mq.sae.quant produces M-quantile estimates of the small
area quantiles of the distribution of y using (7) and bootstrap MSE estimation using MSE estimator (14). Function
mq.sae.poverty produces M-quantile estimates of the small area HCR and PG using respectively (8) and (9) and
bootstrap MSE estimation using MSE estimator (14). Options for using empirical or smoothed, conditional and
unconditional residuals for generating the bootstrap population are available. The details of each function are provided
in the appendix at the end of the paper.

7. Conclusions

In this paper we propose the use of non-parametric bootstrap for estimating the MSE for small area averages,
quantiles and poverty indicators estimated with the M-quantile model and the Chambers-Dunstan estimator. Given
that analytic MSE estimation for quantiles and poverty indicators is difficult, the proposed MSE estimator provides
one practical approach for MSE estimation of complex small area statistics. As illustrated in the empirical section,
the proposed bootstrap MSE estimator approximates well the “true’ MSE error of the target parameters. In addition,
these results show that bootstrap MSE estimation is notably more stable than corresponding analytic estimation. The
practical implementation of the estimation procedures we describe in this paper is assisted by the availability of R
functions. In work we will be conducting in the near future we aim to implement the bootstrap MSE estimator for
estimating the accuracy of quantiles estimates of the income distribution function and of poverty indicators for UK
Local Authority Districts using data from the UK Family Resources Survey and UK Census micro-data.

Acknowledgements

This work is financially supported by the European Project SAMPLE “Small Area Methods for Poverty and Living Condition
Estimates”, funded by the Buropean Commission’s 7th Framework Programme (www.sample-project.eu).

Appendix A. Specifications of R functions

Appendix A.l. Estimation of small area means with mq.sae

e Required Packages: MASS

o mgq.sae(y,x,regioncode.s,m,p,x.outs,regioncode.r,tol.value, maxit.value,k.value)

The function provides estimates of small area averages using (3) and (4) and corresponding analytic estimates of MSE using (6).
Key arguments required are the response variable y, the matrix of covariates x, covariaté information for out of sample areas x.outs,
the number of small areas m and values relating to the convergence of the algorithm.

Appendix A.2. Estimation of small area quantiles with mq.sae.quant

. Requiréd Packages: MASS and np

o my.sae.quant(q,y,x,x.outs,regioncode.s, regioncode.r, MSE, B, R method, maxit)

The function provides estimates of small area quantiles using (7) and corresponding bootstrap estimates of MSE using (14). Key
arguments required are the response variable y, the matrix of covariates x, covariate information for out of sample areas x.outs
and values relating to the convergence of the algorithm. If MSE = TRUE bootstrap MSE estimates are produced. B denotes
the number of bootstrap populations and R denotes the number of bootstrap samples from each bootstrap population. Finally
method defines the type of residuals used for generating the bootstrap population: ‘su’ (smooth unconditional),‘eu’ (emprirical
unconditional), ‘s¢’ (smooth conditional),‘ec’ (empirical unconditional). The default is set to “ew’, which is computationally faster.
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Appendix A.3. Estimation of small area poverty indicators with mq.sag.poverty

o Required Packages: MASS and np

o mq.sae.poverty(y,x,x.outs,regioncode.s, regioncode.r, L MSE, B, R,method)

The function provides estimates of small area HCRs and PGs using (8) and (9) and comresponding bootstrap estimates of MSE using
(14). Key arguments required are the response variable y, the matrix of covariates x, covariate information for out of sample areas
x.outs and values relating to the convergence of the algorithm. L specifies the number of Monte Carlo runs for estimating HCR and
PG using the estimation method in Section 2.2. If MS E = TRUE bootstrap MSE estimates are produced. B denotes the number
of bootstrap populations and R denotes the number of bootstrap samples from each bootstrap population. Finally method defines
the type of residuals used for generating the bootstrap population: ‘su’ (smooth unconditional),‘eu’ (emprirical unconditional),sc’
(smooth conditional), ‘ec” (empirical unconditional). The default is set to "eu’, which is computationally faster.
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