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1. Introduction

This paper is concerned with some basic guestions on reg-
wlarity conditions for a differentiable vector optimization problem.
We prefer the terms “regularity condition”, as these conditions in-
volve both the (vector) objective function and the constraints, and
shall nse the terms “constraint qualification” for those conditions
involving only the constraints.

The paper is organized as follows.
In Section 2 we investigate various regularity conditions for a dif-
ferentiable Pareto optimization problem, with both inequality and
equality constraints, generalizing some resnlts of Maeda (1994) and
specifying, for the case nnder consideration, some corresponding
results of Giorgi, Jiménez and Novo (2004a).

In Section 3 we shall be concerned, always for the problem intro-
duced in the previous sections, with various regularity conditions
of the type considered by Bigi and Pappalardo ( 1999), Castellani,
Mastroeni and Pappalardo (1997), and recently by Maciel, Santos
and Sottosanto (2009). We shall give shorter and more compact
proofs of some results obtained by the said authors and we shall
point out some new results.

If r and y are two vectors of R", we write x < y if o <y,
i=1,2,.,n and r < yif o, <y i=12..,n
If S is a subset of R™, by IS, coS, coneS we denote, respectively,
the closire of S, the convex hnll of S, and the cone generated by S.
B(4%.8) is the ball centered at +°, with radius §. Given S C R and
f: R* — RP, consider the following vector optimization problem:

(vop) min { f(r): v e S}.
A point 2% € S is said to be a Pareto minimum of fon S or
an efficient solution to problem (vop) if there is no v € S such
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that f(z) < f(x°) and f(z) # f(2°); the point 20 is a local Pareto
manimum if there exists B(z% §) such that

SrnSNB°6) =2

being

' .- . 0 ) 0
Sp={reR": fx) < fa"), fle) # F2")}

A point 2% € S is said to be a weak Pareto minimum of fonS
if there is no x € S such that f(r) < f(29).
It is evident the notion of local weak Pareto minimnm of f on S.

Obviously every Pareto minimum point is also a weak Pareto
minimum point and it can be proved (see Miettinen (1998)) that if S
is convex and if the objective functions are quasiconvex with at least
one strictly quasiconvex, the set of local Pareto minimum points is
a subset of the set of weak Pareto minimum points: indeed, under
the above-mentioned assumptions, all the local Pareto minimum
points are also global.

Definition 1.1

Let S ¢ R and z° € clS.
(1.1a) The set,
v ER™: Tt >0, kel b — 10
T(S, %) = stich that
t;c(a:"“ — 1,‘0) —_— v

is the Bouligand tangent cone to S at x° or contingent cone to S
at Y.

It is well known that T(S, x°) is a nonempty closed cone and

that, if S is convex, then so is 7(S, 1) (see Aubin and Frankowska

(1990), Bazaraa and Shetty (1976), Giorgi, Guerraggio and Thier-
felder (2004), Giorgi and Guerraggio (1992)).
(L.1b) The set
veR": 36>0,3v:[0, 5] =R
A(S, &%) = { such that '
7(0) = 2% ~(¢) € S, ¥t € (0, 3], Y(0) = v




is the cone of the attainable directions to S at AR

(1.1¢) The set
veR": 34>0
Z(S, a%) = ¢ such that
D rtve s, Yte (0, 0]

is the cone of the feasible directions to S at xY,

For these cones we hare the following inclusions:
Z(S, 2%y C A(S, %) ¢ T(S, 2).

Now we introduce a generalization of the concept of linear in-
dependence for vectors of R™.
Given a set of vectors of R", A = {a!, a* ..., a?’}, we define the
following sets:

A ={veR": atv < 0, Yi};

A*={veR": a'v <0, Vi};

ker(A) = {v € R": a'v =0, Vi};

lin(A) is the linear subspace generated by A.
We say that the set of vectors of A are positively linearly indepen-
dent or that A is positively linearly independent (pli) if

P
{Z,\i cal =0, A > 0} = A =0.
1=l

Otherwise we say that A is positively linearly dependent (pld).
Definition 1.2 (see Qi and Wei (2002))

Let A = {a', * ..., a?} and B = {bY, b*, ..., b7} two
finite sets of vectors of R™ such that AU B # @. We say that
(A, B) is positive linearly independent if there is no (A, p) % (),
AeRP, peRYL A=0, stuch that



or, equivalently, if

P q
{in-awzwbﬁ:o, /\20} =\ p) =0 (1)
i=1 j=1

Otherwise we say, that (A, B) is positively linearly dependent (pld).

Of course if B = & we get the previous definitions of A pli or pld.

Let us suppose that A # & (B can be also empty). We have
the following results.

Lemma 1.1

L A~ # &, ie. there exists v € R
{A s pli} & { such that a'v <0, Vi } '

This lemma is nothing but the Gordan theorem of the alter-
native (see, e.g., Giorgi, Guerraggio and Thierfelder (2004), Man-
gasarian (1969)).

Lemma 1.2

{(A, B) is pli} &

B is linearly independent and A~ N ker(B) # @,

= i.e. there exists v € R" =
sich that av < 0, Vi and Vv =0, V)
A is pli, B is linearly independent and
{ (conecoA) N lin(B) = {0} } ’
Proof
For the proof of the first two equivalences see, e.g. Hestenes
(1975), or Qi and Wei (2000), Proposition 2.3. The third equivalence
is proved as follows. Let us denote by (a), (b) and (c) respectively,
the first, second and third proposition between brackets.
(b)=(c)
Being A~ # &, for the Motzkin theorem of the alternative
(see, e.g., Mangasarian (1969)) there exists no A > 0, A # 0, such

P
that Z A; - a' = 0, and therefore A is pli.
i=1

{;
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: p q
Let u €(cone coA)NlinB, therefore u = Z A -al = Z g 0,
J=1

il

P q
with A; 2> 0, so we have Z Noal 4 Z («;z;j) =0,
[E=al

j=1
Tanks to (a) A = p = 0, therefore u = 0.

B (¢)=(a)
Let ns suppose that (1) holds. We have
p q
o= Z Acal = — Z/,,LJ -V &(conecoA)NlinB = {0},
fo= J=1

therefore © = 0 and, being B linearly independent, p = 0.

Finally, being A pli, we have A = 0. A

2. Regularity conditions for a differen-
tiable vector optimization problem

A classical paper on regularity conditions for a vector opti-
mization problem, under differentiability assumptions of the fune-
tions involved, is the one by Maeda (1994). This author however,
treats a problem with only inequality constraints, whereas in the
present paper we are concerned with a problem with both inequality
and equality constraints.

Moreover, we shall consider some regularity conditions not ex-
amined by Maeda.

The analysis of the regularity conditions for a vector optimiza-
tion problem has been performed also by other anthors, nunder var-
ious differentiability asswnptions (see, e.g., Cambini, Carosi and
Martein (2008), Giorgi, Jiménez and Novo (2004, 2009), Jiménez
and Novo (2002a, 2002b, 2003), Ishizuka (1992), Preda and Chitescu
(1999)).

Here we follow the approach of Giorgi, Jiménez and Novo (2004a),
adapted to the simpler case of differentiability of the functions
involved. See also Jiménez and Novo (1999) for a similar approach.




Let us consider the problem (vop) with
S={zxeR": g(x) <0, h(x) =0}, (2)

being f: R* - RP, ¢g: R" - R™, h: R" — R", with component,
functions, respectively, f;, i € I = {1, 2, ... ,p}, g;, J € J =
{1, 2, ...m},and hy, ke K={1, 2, ... ,r}.

Let G ={x: g(x) <0}, H={x: h(z)=0},50 S =GN H.

If 2% € S, we denote by J(x?) the subset of J defined by

J() ={je J: g;(z°) =0},

i.e. J(2%) is the set of the active indices at £°. We define then the
following sets
F={x: fle) < f(a%};
S5Y=Fns;
Fr=A{z: fi(x) < f;(a%), Vjel~{i}, iel};
S'=F'NS, i€l
Obviously we have FF = N F" and S® = N S°.
el iel
We suppose that all functions are Fréchet differentiable at the
point taken in to consideration, i.e. 2° € S.
We consider also the following linearizing cones to S at x°:

Cos) =4 "€ R*: Vg («")v<0, Vje Ja, |
A Vhe (v =0, vhe k[

C8) = veR": Vg (" v <0, Vje J(a%,
| B Vhi (Y v =0, Vk € K :

Likewise we define these cones with reference to the previous
sets given by restrictions, such as G, H, F, F*, S*, S% We remark
that for the set F all functions f;, i € I, are active at +? and for
the set /" the same is true for the functions f;, j € I — {i}.

We but K(H) :ker(vhk, (JJO)> ‘
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It is obvious that Cy(S) = Co(GYNK(H) and C(S) = C(G)NK(H).
We have also Cy(S") = Co(F) N Co(S).
Similar expressions hold for C'(S5"), Cy(Sh), C( SY), ete.

Lemma 2.1
We have the following inclusions

Z(8% ) ¢ A(SY, ) ¢ T(SY, ) ¢

cleoT (S0, &%) e e
- AT(S 1) c QI(?ICOF(S , V) O(SY).

If. moreover, Vi (%), k € K, are linearly independent, we
, he (29), : y
have Co(SY) < A(SY, 9.

Proof

The inchisions
Z(89, %) c A(SY, %) ¢ T(SY, 2% c C(S)
are proved in Bazaraa and Shetty (1976) as well as the second part
of the Lemma.
The inclusion
T(S°, %) C cleoT(S, 2V)
is obvious, and, being S° < S*, Vi &€ [, it follow,

T(SY, ) C T(S', %) € eleoT (S, 1°) € C(SY),

taking into account that C'(S") is closed and convex and contains

T(S', 1Y), Therefore

T(S", ") C /ﬁlT(Si, ) C _(TICICOT(:Si, %) < ﬂl(?(Sl) = C'(SY).
1€ 3 1=t

Finally,

cleoT (S0, %) C cleoT(S', &%), Vie I,



and therefore

cleoT(S", 1% C NeleoT(S", 19). ;

Definition 2.1
Let T CR" and F: ' — R, f differentiable on ['. Then

f is said to be pseudoconvez at 2° if Vr €T,
{f(z) < f(@))} = {V ") (r -2 <0}

f is pseudoconcave at t° if and only if —f is psendoconvex at 1%
f is pseudolinear at x° if and only if f is both pseudoconvex and
pseudoconcave at Y,

Lemma 2.2

(2.2a) If every g;, j € J(z9), is psendoconcave at %, then

(2.2h) If every Ay, k € K, is pseudolinear at %, then:
(1) Z(H, %) =T(H, 2% = K(H);
(ii) H =2+ K(H);
(iit) Co(S°) © Z(SY, 2.

Proof

For a) and the points (i) and (ii) of b), see Giorgi, Jiménez
and Novo (2004a), Lemma 3.1. ,

For the proof of (iii), take (i) into account and the inclusion
Co(FNG) C Z(FN G, 1Y), which always hold, if there are no
equality constraints. Then we have

Co(SO) CCFNGYNK(H) C ,
CZ(FNG, 2N Z(H, 2°) = Z(S°, z%). 0

RN
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Lemma 2.3

We have the following inclusions
C(FYNCy(G)NK(H) -
WRYNCGYNKH) |
CCFYNCG)NK(H) =C((5).
2 If some of the sets Cy(S°), C(FYN Co(GYN K(H) and Co(F) N
C(GYN K(H) is nonempty, then its closure is (8.
Proof
See Giorgi, Jiménez and Novo (2004a), Lemma 3.2 (the
proof is an easy exercise).

C?Q(SG) S j()(F‘) M C'(;(G)ﬁ[{(H) C {

We now consider the following regularity conditions (r.c.) for (VOP).

Definition 2.2
We say that for problem (vop), with S

given by (2), it holds:
(1) the Generalized Guignard r.c., (GGRC), if
C’(SO)DICICOT(S", x0);
=

’ (2) the Abadie r.c., (ARC), if
' Cv(SO) — T(Sﬂ, .UO>;
(3) the Generalized Abadie r.c., (GARC) if
C(s") = TS, o),
e ' (4) the Global Cottle r.c., (GCRC), if

W(E)Y N Cy(S) # @ and{Vh(x?) : k € K} is linearly
independent; ‘

(5) the Cottle r.c., (CRC), if,
for each i € I, Cy(SY) # @ and {Vhe(2?): k€ K}

is linearly independent;
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(6)

the Slater r.c., (SRC), if

(9d)

(10)

(11)

fiytedy gy g€ J(x"); are pseudonvex at 2%

hy, k € K, are pseudolinear at &%

{Vhe(z®) : k € K} is linearly independent and, for each
i=1, 2,...,p, there exists 2! € R" such that f;(x*) < fj(xo),
Vi #i, g;(x) <0, Vj € J(z°), and he(xh) =0, Vk € K;

the Linear r.c., (LRC), if

fivgp hei €1, € J(x%) and k € K, are all linear (affine);
the Linear objectives r.c., (LORC), if

fi, i€, hg, k € K, are linear and C(F) N Cy(G) # &5

the Mangasarian-Fromovitz r.c., further specified under

the following sets of assumptions:

with linearly independent objective functions, (LIOMFRC), if
C(F)NCy(S) # @and{V fi(z?) i € [} U {Vhi(z") - k € K}
is linearly independent;

with positively linearly independent objective functions
(PLIOMFRC), if C(F)NCo(S) #2  and the set
({Vfi(;vo) ciel}, {Vh(z®): ke [\}) is pli;

with positively linearly independent constraints, (PLICMFRC),
if Co(F)NC(S)# @ and the set

({vgj(J;O): Je J@)Y, {Vhe(a®): ke K}) is pli

the Maeda-Mangasarian-Fromovitz r.c., (MMFRC), if

K(F)N Co(S) # @and{V f,(z°) : i € I} U {Vhe(2°) : k € K}

is linearly independent;
the Zangwill r.c., (ZRC), if

clZ(S°, %) = C(S%);
the Kuhn-Tucker r.c., (KTRC), if

A(S°, %) = C(S%;

Jo,
4
fa

-

&
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(12) the Reverse r.c., (RRC), if
fi i €1, g5, j€ J(a®), are psendoconcave at 0
and every hy, k € K| is pseudolinear at r¥.
Theorem 2.1
The following implications are verified:
(1) Linear = Reverse = Zangwill = Kuhn-Tncker;
(2) Linear objectives = Zangwill;
(3) Slater = Cottle;
(4) (MMFRC) = (LIOMFRC) = (PLIOMFRC);
(5) (PLICMFRC) < Global Cottle < (PLIOMFRC);
(6) Global Cottle = Cottle;
{7) Cottle = Generalized Abadie;
(8)

8) Global Cottle = Knhn-Tucker = Abadie =

= Generalized Abadie = Generalized Guignard.
Proof
The proof follows the same lines of the proof of Theorem 3.1
in Giorgi, Jiménez and Novo (2004a) with the obvious modifications
for the case under examination (differentiability assumptions). In
particular, Lemmas 1.2, 2.1, 2.2 and 2.3 must be taken into acconnt.
i
However, for the reader’s convenience, we give the complete
proof.
(1a) Linear = Reverse
It is trivial.
(1b) Reverse = Zangwill
Thanks to Lemma 2.2 we have Z(F NG, &%) = C(F N G) and,
always for the same Lemma, we have Z(H, +") = K(H). Therefore,
Z(8% 2 =Z(FNGNH, 2% =C(SY.
(1c) Zangwill = Kuhn-Tucker

It follows from Lemma 2.1.
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(2) Linear objectives = Zangwill
Thanks to Lemma 2.2 we have Z(F, %) = C(F) and Z(H, %) =
K(H). The inclusions Cy(G) C Z(G, x°) € C(Q) are always true;
therefore we get

CIFYNCHG)NK(H)C Z(F; 2N Z(G, YN Z(H, °) =

=Z(5° " CcC(P)NC(G)NK(H) = C(SY).
Applying Lemma 2.3 we conclude that el Z(S° 2°) = C(59). We
point out that in Linear objectives r.c. we could substitute “f;, hy
linear” with “f; psendoconcave and hy pseudolinear”.

(3) Slater = Cottle
[t is sufficient to apply to each scalar problem
(Pj) min{f;(z):re S}
the implication Slater = Cottle, proved in Bazaraa and Shetty
(1976), Theorem 6.2.3, i7).

(4a) (MMFRC) = (LIOMFRC)
It is sufficient to note that K (F) N Cy(S) C C(F) N Cy(S).

(4b)  (LIOMFRC) = (PLIOMFRC)
[t is trivial, as if AU B is linearly independent, then (A, B) is
positively linearly independent.

(5a) (pricMFRC) = Global Cottle
If (vg, (%), je J(xo)), (Vh,c (29, ke K) is positively linear-
ly independent, thanks to Lemma 1.2, this is equivalent to Cy(G) N
K(H) # @ and (th (2%, ke A"’) is linearly independent. There-
fore

cl Co(G)NK(H) =C(G)NK(H). (3)

Let u € Co(F) and v € C(G)NK(H) (u exists by assumptions).
Being Cy(F') open, there exists a neighborhood B(w) of u such that
B(u) € Co(F), and, tanks to (3), B(u) N (CU(G) N K(H)) £ &
Therefore, Cy(F) N Co(G) N K(H) # @, so Global Cottle r.c. is

verified.




e
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(5b) Global Cottle = (pLICMFRC)

By asumptions we have

WE)YNCo(G) N K(H) # 2. (4)

Therefore, Co(G) N K(H) # @ and, being (V’hk (%), ke K)
linearly independent, thanks to Lemma 1.2,

(Vg (+2), j € Ja), (Thi (), k€ K))

is positively linearly independent. From (4),

WF)NC(G) N K(H) # 2,
that is (PLICMFRC) is verified.

(5¢) Global Cottle & (PrLIOMFRC)
It is sufficient to note that the role played f; and g; in PLIOMFRC
and in PLICMFRC is symmetric, therefore also the said equivalence
is trie.

(6) Global Cottle = Cottle

It is trivial.

(7) Cottle = Generalized Abadie

For each ¢ = lw, ... , p, the condition Co(S") # @ implies
T(S',1°%) = C(E} ). Therefore, ﬂf (St &%) = OC S = C(S9).

(8)  Global Cottle = Kuhn-Tucker = Abadie =
= Generalized Abadie = Generalized Guignard

The implications foﬂow trivially from Lemma 2.1. O

The following scheme shows the various relationships pointed
out in the previous theorem.
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(MMFRC) = (LIOMFRC) = (PLIOMFRC) Slater
i’
(PLIOMFRC) & Global Cottle =  Cottle
4 I
Linear objectives = Zangwill = Kuhn-Tucker i
T A I
Reverse Abadie i
fr 4 4
Linear Generalized Abadie &=
4
Generalized Guignard
Remark 2.1
It is known that if 20 is a local efficient point for (Vop),
then

T(S, YN Co(F) = 2.

If, moreover, the set {Vhg(2): k€ K} is Li., from Lemma 1
we have Cyh(S) N Cy(F) = @, and consequently at +° the Global
Cottle r.c. cannot occur and obviously cannot occur any r.c. which
implies the Global Cottle r.c. . For example the (MMFRC) and the
(LIOMFRCQ).

For this reason the Global Cottle r.c. cannot be considered a
trie regularity condition, i.e. a condition assuring the existence of
not all zero multipliers in the nsual Kuhn-Tucker condition for a
local efficient point x° of (vop), with S given by (2).

Remark 2.2

We have said that, at least for vector optimization prob-
lems, it is better to use the term “constraint qualifications” only
for those conditions involving only the constraints. With reference
to (voPr), where S is given by (2) and all the functions are differen-
tiable on a common open set, a constraint qualification condition
has been considered, e.g. by Lin (1976), Marusciac (1982), Singh
(1987, 1988), Wang (1988).

These anthors consider the following Abadie constraint qualifi-
cation (Abadie c.q.):

C(S) = T(S, ). (5)




e
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Contrary to the scalar case, where the Abadie c.q. assures the

positivity of the multiplier associated to 7 f(x%), in the Fritz John
necessary optimality conditions, for (vop) this does not happen.
Indeed, the authors quoted above obtain the following result.

If 0 is a local efficient point for (vop), with S given by

(2), or also a local weak efficient point, and the Abadie c.q. (5) is

satisfied, then there exist A € RP, A >0, A # 0, p € R™ u >0,

and v € R" such that

SN TR Dy T Y v hi(a?) =0

el jeJ ke K
Z;Lj g%y = 0.
ied

In other words, it is possible to obtain, nnder the Abadie c.q.,
only a necessary optimality condition “halfway” between a Fritz
John type condition and a Kuhn-Tucker type condition.

We remark that the original proofs of Lin (1976), Marusciac
(1982) and Singh (1987) work only if &% is a global solution or a
global weak solution.

An error in the proof of Lin has been corrected by Marusciac

(1982) and in a more precise way by Wang (1988). See also the
Errata Corrige of Singh (1988), where, however, no justifying reason
is given. For more general treatments see, e.g., Giorgi, Jiménez and
Novo (2004b) and Jiménez and Novo (2002a). It is well known that

the Mangasarian-Fromovitz c.q. (M FCQ), expressed by:
Co(S) # @ and {7 f;(«%), i € [} is linearly independent

is a sufficient condition for the Abadie c.q. (5).

A point r° € S satisfying the previous necessary optimality
conditions (i.e. with A > 0, A # 0,) is called weak reqular in the
sense of Bigi and Pappalardo (1999). See the next Section 2.
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Remark 2.3

T'hose regularity conditions which involve generalized con-
vexity assumptions could be further generalized, as pointed out by
Cambini, Carosi and Martein (2008), by means of classes of vec-
tor generalized convex functions, broader then the corresponding
classes of functions, where the generalized convexity is required
for the various components of the vector functions involved. More
precisely, we consider the following definitions.

Definition 2.3
Let F': R™ — RP defined on an open convex set X € R”
and differentiable at 2% € K.

(i) F'is said to be intR? -pseudoconvex at ¥ if the following
implication holds

ve X, F(x) € F(a®)+intRP = 7 F(2%)(x — &%) €intRP

(i) F is said to be reverse pseudoconcave at 2% if the fol-
lowing implication holds

re X, F")(z - 1) €eRP = F(x) € F(z) + RP

when p = 1, (i) and (ii) in Definition 2.3 collapse to the usu-
al definition of pseudoconvexity at z’ and pseudoncavity at 9,
respectively.

It can be proved that the class of componentwise pseudoconvex
(pseudoncave) vector-valued functions is strictly contained in the
class of in R? -psendoconvex (reverse pseudoncave) functions.

Finally, we obtain, under the Generalized Guignard r.c., the Kuhn-
Tucker type necessary conditions for (vop), with S given by (2).
Theorem 2.2

Let 2% be a local efficient point for (vop), with S given by
(2). Let the Generalized Guignard r.c. be verified at 0.
Then the system

a8

€




e
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[ <0, Vel
7 fila%v <0, for at least one 1 € [, (6)
- )r

Tg;(a®)w <0, Vje b,
Thi(aMv =0, VkeK,
has no solution v € R™

Proof
Let ns suppose that there exists v € R™ which verifies the
said systermn.
If 0 is a local efficient point for (vop), with S given by (2),
then ¥ is a local solution of each scalar problem

(P}) min {f;(x) : r e S},
Therefore, we have <7 f,(cu > 0, Yu € T(S?, ) and also, for
the linearity and continuity of the differential,

7 fi(x"u = 0, Yu € clcoT(S", °). (7)
We have that v € C(S%) and for the Generalized Guignard r.c.,
v e yr““x[cl coT(S?, ). Therefore, in particular, v €clcoT(S*, +7)
Jj& .
and, taking relation (7) in to account 57 f;(2%)v > 0, in contradiction
with the first two conditions of system (6). O
Theorem 2.3

Let the same assumptions of theorem 2.2 hold. Then there
exist A > 0, x> 0, v € R", such that

STA L)+ YT w790 F D) vk Thi(a®) = 0.

el JEJ(£®) ke K

Proof

Apply to system (6) the Tucker theorem of the alternative
(see, e.g., Mangasarian (1969)).
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Remark 2.4

An efficient solution of (vop), with S given by (2), is said
to be a properly efficient solution, in the sense of Kuhn and Tuck-
er, if the system (6) has no solution in v € R”. This concept was
introduced by Kuhn an Tucker (1951), in order to avoid some un-
desirable situations. Thus, any “true” regularity condition which
holds at an efficient point x° is also a condition assuring that z° is
a properly efficient point, in the sense of Kuhn and Tucker. For the
various notions of proper efficiency proposed in the literature and
for their relationships, see the survey paper of Guerraggio, Molho
and Zaffaroni (1994).

3. The approach of Bigi and Pappalardo

We recall the following Fritz John necessary optimality

conditions for (vopr), with S given by (2).
Theorem 3.1

Let us consider (vop), with S given by (2) and where the
functions fi, i € I = {1, 2, ..., p}, g5, j € J={1, 2, ..., m}
and hg, k€ K = {1, 2, ..., r} are continuously differentiable in a
neighbourhood of #? € S. A necessary condition for z° to be a local
weak efficient point is that there exist vectors A € R?, p € RY and
v € R" such that

>N VAE) + > py g0 + D vk Thi(a%) =0; (8)

el jed keK
1;9;(2%) =0, j e J; 9
(’\7 i V) % (09 07 O) . (10)

See, e.g., Da Cunha and Polak (1967), Miettinen (1998), Simon
(1986) and, for further insights and generalizations, Giorgi, Jiménez
and Novo (2004b), Jiménez and Novo (2002a, 2002b, 2003). .

Let Af(z%) denote the set of Fritz John multipliers (A, u, v)
satisfying (8)-(10), associated to &%, Let us introdnce the following
notations




%

w

2

&
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al =<7 fi(x®), i e, W =xg;(a"), jeJ; & = <ghe(%), k € K
A={at, ielly B=1{b,je by C={cF ke K}.

The stbsets of vectors of these three sets, associated respectively
to the snubsets of indices Iy of I, Jy of J and Ky of K, are denoted
Ao(C A); Bo(C B); Co(C C).

We note that

(M) £ @) { (AUB,C)is pld} &
e {I(\ o v) e RF X R™ xR}

such that

Z,\,naf+Z;,Lj-lrj+zyk»(:kr(); (11)

e ] jed ke K

(A, 1) =0, (A, g v) £ (0, 0, 0). (12)

Following Bigi and Pappalardo (1999), and Maciel, Santos and
Sottosanto (2009), we state the following notions of regularity for
(vop), with S given by (2).
Definition 3.1
Given r € S such that M(z) # &, we say that:

(a) & is weak-reqular if there exists (A, u, v) € M(x) with A £ 0;

(b} x is tahﬂly weak-reqular if, for all (A, p, v) € M(x), there
exists i € [ such that A\, # 0;

(¢) xis regular if there exists (\, p, v) € M(r), with A; >0 for
all7 € [,
(d) xis totally regular if, for all (A, p, v) € M(x), one has A; > 0

for allz € [. ;

We note that (d)=(c), (d)=>(b), and (b) and (c) imply (a).
The notions (b) and (¢) are not related, as shown by examples
in Bigi and Pappalardo (1999).
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We now prove, in a more direct and synthetic way, some results
of Maciel, Santos and Sottosanto (2009), adding some new results
and remarks. First of all, we note that, without loss of generality,
we can always suppose that all the inequality constraints are active
at 2% ie. J = J(2%).

Theorem 3.2
{M(2") # @ and 2° is totally weak regular} <
o {(AU B, C)is pld and (B, ) is pli}.
Proof
(=)
The first part is clear. Assume that (B, C) is pld. Then there
exists (p, v) € R™ x R" such that ¢ > 0, (i, v) # 0 and

Z/.Lj-bj+21/k-(tk = 0. (13)

jeJ keK

Choosing A = 0, we have that (0, ux, v) € M(2%), which con-
tradicts that z¥ is totally weak-regular.

(=)

It is clear that M(2%) # &, since (AU B, C) is pld. Choose
(A, i, v) € M(z°), then (11)-(12) hold. If we assume that A\ = 0,
then (13) holds with (x4, v) # 0, but this contradicts the assumption
that (B, (') is pli. o

Remark 3.1

We note that if we assume that M(2°) # @, then we can easily
prove that (MFCQ) is both necessary and sufficient for z° to be
totally weak regnlar (Maciel an others (2009) are not clear on this
point, in Theorem 3.2 and Remark 3.2).

Theorem 3.3

Assume that there exist By C B and Cy C C such that
(Bg, C) is pli and (AU By, Cy) is pld. Then M (%) # @ and «° is

weak-regular.

A




2

Proof

Sirnilar to-the proof of the previous theorem.

Remark 3.2
We point out that the condition (AUBy, Cy) is pld is weaker
than (Ag U By, Cp) is pld for some Ag C A, ie. the condition
(Ao U By, Cy) is pld for some Ay C A implies that (AU By, Co) is
pld, but the converse is false, if 4y # A. Consider, e.g.,
A={(-1,0,0), (0,~1,0),}, B={(1,1,0)} and C' = {(0,0,1)}.
Theorem 3.4

If 19 is weak-regular, then A is pld or there exist By C B
and Cy C C such that (B, Cp) is pli and (AU By, Cj) is pld.
Proof
The result is a consequence of Carathéodory’s lemma (see,
e.g., Bertsekas (1999)) and can be proved also following a scheme
similar to the one used by Qi and Wei (2000) in their Proposition
2.2. , a

03

We note that of course the converse of the first part of the
theorem is true because if A is pld, then ¥ is weak-regular.
Definition 3.2

A vector d € R" is said to be a positive linear combination
(plc) of (B, C) if there exists (p, ) with g > 0 such that

d = Z;Lj-1ﬁ+2uk~(;:k.
jed keK
Definition 3.3
The triplet (A, B, C) satisfies the strict positive linear depen-
dence (SPLD) if for every s € I, —a’® is a plc of (A, U B, C),
where A, = A — {@¢*}. Equivalently: for every s € I there exists
(o, 3% ~°) € Reardl={s} x R™ x R" such that (a®, 37) > 0 and

@+ ard by 8V Y vt =0 (14)

its jed keK



3%
[

Theorem 3.5

{(spPLD) holds} « {M(2%) # @ and 2° is regular}.

Proof

(=)
It is sufficient to sum up in s € [ the equations (14) to obtain
(A, . v) € M(2%) with A > 0.

(=)
It is obvious , since if (9) holds with \; > 0, ¥s € I, we can find
—a® for each s € [, satisfying Definition 3.3. A

We now recall the Cottle reqularity condition (Cottle r.c.): see
Section 2 of the present paper.

Definition 3.4

We say that Cottle r.c. holds at 2% € S if C is linearly
independent and for each s € [,
A7 N B Nker(C) # &, where A, = A— {a’}.

The condition above is called in Maciel, Santos and Sottosanto
(2009), “Mangasarian-Fromovitz regularity condition” (MFRC), but
we prefer to use the term “Cottle r.c.”, as the Maeda-Mangasarian-
Fromovitz r.c. is another type of regularity condition (see Section
2 of the present paper).

According to Lemma 1.2 we have the following result.

Theorem 3.6
{(Cottle r.c.) holds} < {For every s € [ the set (A, U B, () is
pli}.

The following result connects Cottle r.c. and totally regular

points.

Theorem 3.7

Let M (&% )# @. Then {(Cottle r.c.) holds} < {z¥ is totally regular }.

<




Proof
(==)

Take (A, . v) € M (29 ) then (9)-(10) hold. Assume that A, =0
for some s € [. This implies that (A, U B, C) is pld, which is a
contradiction to the fact that (A,UB, ') is pli, which holds, thanks
to Theorem 3.6.

(e==)

If for some s € [, (A, U B, (') is pld, then (9)-(10) are satisfied
with A, = 0, but this contradicts the assumption that ¥ is totally
reguilar. 0

Definition 3.5

We say that (vop), with § given by (2), satisfies the positive
linear independence reqularity condition (PLIRC) at 2% € S if:
iy (B, C)is pli
(ii) for every s € [ there does not exist
(v, 3,v) € Reardl={s} o« R"™ % R" such that (o, 3) > 0, a # 0,
and '
Zzyi cat + ZB] “H Z”;’k k=0,
I8 jed ke K

Remark 3.3
(a) According to Lemma 1.2, the condition (i) of the previons
Definition is equivalent to: ' is linearly independent and
B Nker(C) # &.

(h) By Motzkin alternative theorem (see, e.g., Giorgi, Guerrag-
gio and Thierfelder (2004), Mangasarian (1969)), the condition (ii)
of the previous Definition is equivalent to:

for each s € I it holds A; N B*Nker(C) # @.

Theorem 3.8

{ (PLIRC) holds } < {(Cottle r.c.) holds}.



Proof

(=)

Let ns prove that for each s € I we have A7 N B~ Nker(C) # @.
Indeed, by Remark 3.3 (a), there exists u € B~nker(C) and by
Remark 3.3 (b), there exists v € A,NB*Nker(C). For each o € (0,1)
let wo = au 4 (1 — a)v. It is easy to check that w, € B~ nker(C),
Vaoe (0,1). As lim w, =v € A7 and A7 is an open set, it follows

a0+

that w, € A7 N B~Nker(C), for & > 0 small enough.
Now, as C is linearly independent (see Remark 3.3 (a)), we have
that (Cottle r.c.) holds.

(=)
It is clear from the definition of (Cottle r.c.), taking Remark 3.3
in to account and observing that

{A7 N B Nker(C) # 2} = {B~ Nker(C) # @}
]

An immediate consequence of Theorem 3.7 is the following result.

Theorem 3.9
Let M(2*) # @. Then:

{ (PLIRC) holds } < {2 is totally regular} .

Both Theorems 3.7 and 3.8 are present in Maciel, Santos and
Sottosanto (2009), but our proof are more direct and stringent.
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