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SUMMARY

M-quantile regression is defined as a ‘quantile-like’ generalization of robust regression based
on influence functions. The most appropriate assumption in the presence of gross errors in the
data is that of independent not identically distributed (i.n.i.d.) regressors and errors. To the best
of our knowledge, there is no existing theory for the asymptotic properties of the M-quantile
regression coefficients estimators and the estimation of their variance in this context. The paper
proves the consistency and asymptotic normality of the M-quantile regression coefficients es-
timators in both the i.i.d. and the i.n.i.d. settings. Estimators of the variance of the M-quantile
regression coefficients appropriate to each setting are then proposed. Empirical results show that
these estimators appear to perform well under different simulated scenarios.
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1. INTRODUCTION

Regression analysis is a standard tool for summarizing the average behaviour of a response
variable y given a set of covariates x. It has been one of the most important statistical methods for
applied research for many decades. However, the mean is not in general an adequate summary
of a distribution, and so may be an inappropriate target of inference if one is, for example, inter-
ested in the extreme behaviour of y conditional on x. For this reason, Koenker & Bassett (1978)
proposed the quantile regression (QR) model, which allows one to characterise the distribution
of a response variable given a set of explanatory variables through models for the quantiles of
this conditional distribution.

In the linear case, quantile regression leads to a family (or ‘ensemble’) of planes indexed by the
value of the corresponding percentile coefficient. For each value of q in (0, 1), the corresponding
model shows how the q-th quantile of the conditional distribution of y given x, varies with x.
In their seminal work, Koenker & Bassett (1978) formalized asymptotic properties of the least
absolute deviation estimator of the QR model for independent observations.

Quantile regression can be viewed as a generalization of median regression. Similarly, ex-
pectile regression (Newey & Powell, 1987) is a ‘quantile-like’ generalization of mean, i.e. stan-
dard, regression. M-quantile (MQ) regression (Breckling & Chambers, 1988) extends this idea
to a ‘quantile-like’ generalization of regression based on influence functions (M-regression). M-
regression was introduced by Huber (1973) as a method of ensuring regression estimates that are
robust against the presence of gross errors in the data. He also provided conditions that ensure
the existence and asymptotic normality of the M-regression coefficients estimators for the case of
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fixed regressors and independent identically distributed (i.i.d.) errors. Yohai & Maronna (1979)
provide similar results for stochastic i.i.d. regressors.

The aim of this paper is to study asymptotic properties of the M-quantile regression coeffi-
cients estimators. First we show how the results in Huber (1973) apply to this case (as already
pointed out by Breckling & Chambers, 1988). Next we extend these results to the case of inde-
pendent not identically distributed (i.n.i.d.) regressors and disturbances. This is an important case
which to the best of our knowledge has not been discussed in the literature. This assumption is the
most natural in the presence of gross errors in the data. Moreover it is the most appropriate one
for relationships estimated using stratified cross-sectional data, e.g. when data are obtained from
social and business Surveys, like the EU-SILC Surveys and the various national Labour Force
Surveys. It is therefore very useful to have conditions which ensure that the familiar asymptotic
properties of robust regression coefficients estimates hold under the i.n.i.d. case. We also propose
covariance matrix estimators for both the i.i.d. and i.n.i.d. situations and prove their consistency.

The structure of the paper is as follows. In Section 2 we present the asymptotic properties of
the M-quantile regression coefficients estimators and propose a covariance matrix estimator in
the i.i.d. setting. The extension of these results to the i.n.i.d. case is provided in Section 3. These
large sample approximations are then validated by a simulation study in Section 4. Finally, in
Section 5 we summarize our main findings and provide directions for future research.

2. ASYMPTOTIC PROPERTIES AND COVARIANCE MATRIX ESTIMATION: THE I.I.D. CASE

Assume that the observations {(yi,xTi ), i = 1, . . . , n} are generated by the linear model

yi = xTi β0 + ui, (1)

where {ui} is a sequence of independent identically distributed (i.i.d.) random variables with
variance σ2 > 0, β0 is a vector of unknown parameters and xi are p-dimensional fixed regressors.
We will denote Xn the n× p matrix with rows xTi .

The M-quantile regression coefficient estimator (Breckling & Chambers, 1988) is defined as
the vector β̂q which minimizes

n∑
i=1

ρq

(
yi − xTi β

σ

)
, (2)

over β, where ρ is the convex loss function associated with the M-quantile and ρq is de-
fined as ρq(u) := |q − I(u < 0)|ρ(u), for any q ∈ (0, 1). The most common choices for ρ are
ρ(u) = |u|, which corresponds to quantile regression (Koenker & Bassett, 1978), ρ(u) = u2,
which leads to expectile regression (Newey & Powell, 1987) and the Huber loss function
ρ(u) = (c|u| − 1

2c
2)I(|u| > c) + 1

2u
2I(|u| ≤ c), which represents a compromise between the

quantile and expectile loss functions. Since ρ is convex, the vector β̂q can equivalently be de-
fined as the solution of the equations

n∑
i=1

ψq

(
yi − xTi β

σ

)
xi = 0, (3)

where ψq(u) = dρq(u)/du = |q − I(u < 0)|ψ(u), with ψ(u) = dρ(u)/du. An iterative solu-
tion is needed here to obtain estimates of βq. The application of an iteratively reweighted least
squares algorithm or the use of the Newton-Raphson algorithm then leads to a solution of (3).
Theoretically the vector βq is defined as the vector that minimizes the expectation of (2) or,
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equivalently, as the solution of the expected value of equation (3). In order to better understand
the definition of βq, let Q(xi, q) = xTi βq denote the M-quantile of yi. From location and scale
equivariance of Q(xi, q), it follows that Q(xi, q) = xTi β0 +Q(q), where Q(q) is the q-th M-
quantile of ui. This implies that

βq = β0 +Q(q)e1, e1 = (1, 0, . . . , 0)T ,

so that changing q only changes the intercept term in βq. On the other hand, when the scale of yi
also depends on xi, say ui = (xTi κ)εi, with εi independent of xi and κ ∈ Rp, then

Q(xi, q) = xTi β0 +Q(q)xTi κ = xTi [β0 +Q(q)κ],

whereQ(q) denotes the q-th M-quantile of εi. Hence in this case the slope coefficients in βq also
vary with q (since βq = β0 +Q(q)κ). This case will be considered in more detail in Section 3.

The asymptotic theory for quantile regression and expectile regression models has already
been studied by Koenker & Bassett (1978) and Newey & Powell (1987), respectively. The case of
M-quantile regression with i.i.d. errors and fixed regressors can be easily derived from the results
in Huber (1973), as pointed out in Breckling & Chambers (1988). For the sake of completeness
we now state these results.
For ui(q) = (yi − xTi βq)/σ, ψ′qi = ψ′q(ui(q)) and ψqi = ψq(ui(q)), let

Bn := σ2
E[ψ2

q1]
(E[ψ′q1])2

[
1
n

n∑
i=1

xixTi

]−1

.

Consider the following assumptions:

ASSUMPTION 1. The diagonal elements γii of the projection matrix Xn(XT
nXn)−1XT

n sat-
isfy

max
1≤i≤n

γii
n→+∞−→ 0.

ASSUMPTION 2. The function ψ is bounded and non-decreasing and possesses bounded
derivatives up to the second order.

ASSUMPTION 3. E[ψqi] = 0 for all i.

THEOREM 1. Under Assumptions 1-3, for each q ∈ (0, 1) β̂q exists in probability. Moreover

√
nB−1/2

n (β̂q − βq)
d−→ N(0, Ip),

where Ip is the identity matrix of size p.

In order to use the previous theorem to build confidence intervals and hypothesis tests, a consis-
tent estimator of the asymptotic covariance matrix of β̂q is needed.

Assume that s is a consistent estimator for σ and define ûi(q) := (yi − xTi β̂q)/s, ψ̂′qi :=
ψ′q(ûi(q)) and ψ̂qi = ψq(ûi(q)). The analytical form of Bn suggests an estimator already pro-
posed by Street et al. (1988) and now extended to covariance matrix of β̂q:

V̂ arSCR(β̂q) =
1
n
B̂n = s2

(n− p)−1
∑n

i=1 ψ̂
2
qi[

n−1
∑n

i=1 ψ̂
′
qi

]2 [ n∑
i=1

xixTi
]−1

. (4)
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An approximate confidence interval of level (1− α) for the hth coefficient at q is then

β̂qh ± z(1−α/2)

√
V̂ arSCR(β̂qh),

where z(1−α/2) denotes the (1− α/2) quantile of the standard normal distribution.
In the next theorem we prove consistency of B̂n.

THEOREM 2. Under Assumptions 1-3,

B̂n −Bn
P−→ 0.

Proof. Since ψ′qi is bounded and continuous in β, the uniform law of large numbers yields

sup
β

∣∣∣∣∣ 1n
n∑
i=1

ψ′q

(
yi − xTi β

σ

)
− E

[
ψ′q

(
yi − xTi β

σ

)]∣∣∣∣∣ P−→ 0.

Since β̂q
P−→ βq and s

P−→ σ, it follows from a slight modification of Lemma 2.6 in White
(1980) that

1
n

n∑
i=1

ψ̂′qi
P−→ E[ψ′q1].

Analogously we can prove that

1
n− p

n∑
i=1

ψ̂2
qi

P−→ E[ψ2
q1].

So the result is a consequence of the continuous mapping theorem. �

The next result shows that using estimator (4) to test linear hypotheses and to construct confi-
dence intervals is asymptotically correct.

Corollary. Under Assumptions 1-3,
√
nB̂−1/2

n (β̂q − βq)
d−→ N(0, Ip)

and

n(β̂q − βq)T B̂n(β̂q − βq)
d−→ χ2

p.

Proof. Consequence of Theorems 1 and 2 and Lemma 3.3 in White (1980). �

3. ASYMPTOTIC PROPERTIES AND COVARIANCE MATRIX ESTIMATION: THE I.N.I.D. CASE

In the previous Section we stated asymptotic properties of the M-quantile regression coeffi-
cients estimators in the case of i.i.d. errors and fixed regressors. However, these assumptions on
the data are quite strong and do not cover many cases which arise in practice. For this reason
we extend the results presented previously to the case of i.n.i.d. data, which is the most natural
assumption in the presence of gross errors in the data. First we prove asymptotic normality and
then we introduce a new covariance matrix estimator, which is a generalization of the previous
one. In Section 4 we will compare the two estimators and see that this new estimator performs
better in the presence of heteroskedasticity.
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Assume that the observations {(yi,xTi ), i = 1, . . . , n} are generated by the linear model (1),
with {(xTi , ui)} a sequence of independent not (necessarily) identically distributed (i.n.i.d.) ran-
dom vectors, and xi a p-dimensional vector. The value ui is a scalar error with variance σ2

i and
β0 is a vector of unknown parameters. Notice that by assuming that {(xTi , ui)} is an i.n.i.d. se-
quence, the case in which observations are obtained not from a controlled experiment but from
a stratified cross-sectional sample is covered. Also covered is the case of fixed regressors with
(possible) heteroskedastic errors.

Since the errors are no longer i.i.d., the definition of the M-quantile regression coefficient
estimator needs to be modified from the definition given in the previous Section. Here β̂q is the
vector that minimizes

n∑
i=1

ρq

(
yi − xTi β

σi

)
, (5)

over β, or equivalently it is the solution of the equations
n∑
i=1

ψq

(
yi − xTi β

σi

)
xi
σi

= 0. (6)

For ui(q) = (yi − xTi βq)/σi, ψ′qi = ψ′q(ui(q)) and ψqi = ψq(ui(q)), let W−1
n VnW−1

n be the
asymptotic covariance of β̂q obtained by Taylor expansion (Binder, 1983) of (6) at β̂q = βq with

Wn =
1
n

n∑
i=1

1
σ2
i

E[ψ′qixix
T
i ]

Vn =
1
n

n∑
i=1

1
σ2
i

E[ψ2
qixix

T
i ].

Notice that if the errors ui are i.i.d. with variance σ2 then we have that
yi − xTi βq = yi − xTi β0 −Q(q) = ui −Q(q), where Q(q) is the q-th M-quantile of ui.
It follows that yi − xTi βq are i.i.d. random variables. If moreover the regressors are fixed, the
matrices Wn and Vn simplify

Wn = σ−2E[ψ′q1]
1
n

n∑
i=1

xixTi

Vn = σ−2E[ψ2
q1]

1
n

n∑
i=1

xixTi ,

and the asymptotic covariance matrix Bn follows directly.

The asymptotic theory will be developed under the following assumptions.

ASSUMPTION 4. For each i there exists a finite constant Min such that

|xi|√
n
≤Min a.s. and εn := max

1≤i≤n
M2
in

n→+∞−→ 0.

ASSUMPTION 5. The matrices Vn and Wn are uniformly positive definite.

ASSUMPTION 6. There exists a finite positive constant ∆ such that for all i E|xij |2 < ∆,
j = 1, . . . , p.
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ASSUMPTION 7. E[ψqixi] = 0 for all i.

ASSUMPTION 8. The function ψ is bounded and non-decreasing and possesses bounded
derivatives up to the second order.

ASSUMPTION 9. The variances σ2
i = V ar(ui) are bounded away from zero, σ2

i > σ2
MIN for

all i.

Assumption 4 is a generalization of Assumption 1 in Section 2. It is used in the application
of Lindeberg Central Limit Theorem. The uniform boundedness of the elements of Vn and
Wn is guaranteed by Assumption 6. Assumption 6 together with Assumption 5 ensure that Vn,
Wn and their inverses are uniformly bounded and uniformly positive definite for n sufficiently
large. The generality of the assumptions about Vn and Wn is necessary because they are not
required to converge to any particular limit. This case is particularly important in the sampling
situation, where the investigator usually cannot control the experiment to ensure the convergence
of these matrices to some limit. Assumption 7 is an identifiability condition; it guarantees that the
expectation of (5) reaches its minimum at the true value βq. When E[ψqi] = 0, independence of
ui(q) and xi is sufficient but not necessary for Assumption 7. Assumption 7 covers also the case
in which E[ψqi|xi] = 0, thus allowing heteroskedasticity of the form E[ψ2

qi|xi] = g(xi), where
g is a known function. Finally Assumption 8 is technically convenient. However we believe that
the existence of higher order derivatives of ψ is not essential for the result to hold.
The next theorem demonstrates the asymptotic normality of β̂q. Its proof is an extension of the
proof of the asymptotic normality of β of M-regression in Huber (1973).

THEOREM 3. Under Assumptions 4-9, for each q ∈ (0, 1) β̂q exists in probability. Moreover

√
nV−1/2

n Wn(β̂q − βq)
d−→ N(0, Ip).

Proof. The matrix Wn is positive definite for n sufficiently large. Thus we can define the sym-
metric positive definite matrix W−1/2

n such that (W−1/2
n )2 = W−1

n . The elements of W−1/2
n are

uniformly bounded under Assumptions 5, 6 and 9.
Without loss of generality we assume βq = 0 and consider the transformation

zi =
1

σi
√
n
W−1/2

n xi β∗ =
√
nW1/2

n β.

Then β̂∗q =
√
nW1/2

n β̂q is a solution of

n∑
i=1

ψq

(
ui(q)− zTi β̂∗q

)
zi = 0.

The idea is to compare the zeros of the two random functions:

Φ(β∗) = −
n∑
i=1

ψq
(
ui(q)− zTi β∗

)
zi

Ψ(β∗) = β∗ −
n∑
i=1

ψqizi.
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The zero β̂∗q of Φ is corresponds to
√
nW1/2

n β̂q, while the zero of Ψ is

β̃∗q =
n∑
i=1

ψqizi.

Let a ∈ Rp such that |a| = aTa = 1. Thanks to Assumption 4, the Lindeberg Theorem ap-
plied to aT β̃∗q implies that β̃∗q is asymptotically normal with mean 0 and covariance matrix∑n

i=1E[ψ2
qiziz

T
i ] = W−1/2

n VnW
−1/2
n .

We will show that |β̂∗q − β̃∗q | = oP (1), so that they follow the same law. Obviously, this result

implies that
√
nβ̂q = W−1/2

n β̂∗q is asymptotically normal with mean zero and covariance matrix
W−1

n VnW−1
n . Performing a Taylor expansion of aTΦ(β∗), we have

aTΦ(β∗) = −aT
[

n∑
i=1

ψqizi +
n∑
i=1

ψ′qizi(z
T
i β∗) +

1
2

n∑
i=1

ψ′′q (ui(q)− θzTi β∗)zi(zTi β∗)2
]

with 0 < θ < 1. Since
∑

iE[ψ′qiziz
T
i ] = Ip, we have that

aT [Φ(β∗)−Ψ(β∗)] =

= aT
n∑
i=1

[ψ′qiziz
T
i − E(ψ′qiziz

T
i )]β∗ − 1

2

n∑
i=1

ψ′′q (ui(q)− θzTi β∗)(zTi a)(zTi β∗)2

=: A+B.

In what follows we show that Φ−Ψ is uniformly bounded in a neighborhood of β∗ = 0, more
precisely on sets of the form Γ = {(β∗,a) : |β∗|2 ≤ K, |a|2 = 1}. Introduce the notation ri :=
zTi a and ti := zTi β∗ and consider the first term

E(A2) =
n∑
i=1

E(aT [ψ′qiziz
T
i − E(ψ′qiziz

T
i )]β∗)2 ≤

n∑
i=1

E(ψ′qiriti)
2.

Notice that thanks to Assumptions 5 and 6, |zi|2 ≤ ηM2
in/σ

2
MIN a.s., where η is a lower bound

for the eigenvalues of W−1/2
n . Since |ψ′q(u)| ≤ C ′ we have that

E(A2) ≤ C ′η

σ2
MIN

|β∗|2εn
n∑
i=1

E[ψ′qi|zi|2] ≤ C ′ηKεnp =: K1εn.

Given δ > 0, Markov’s inequality implies that

P

(
|A| ≥

(
2
δ
K1εn

)1/2
)
≤ δ

2
,
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for all (β∗,a) ∈ Γ. As far as the second term is concerned, assuming |ψ′′q (u)| ≤ C ′′,

E|B| ≤ 1
2σMIN

C ′′ηε1/2n E

(∑
i

t2i

)

≤ 1
2σMIN

C ′′ηε1/2n |β∗|2tr

(
E

[∑
i

zizTi

])

≤ 1
2σMIN

C ′′ηKC1pε
1/2
n =: K2ε

1/2
n ,

where we have used the fact that tr
(
E[
∑

i ziz
T
i ]
)
≤ C1p, since the matrix E[

∑
i ziz

T
i ] is uni-

formly bounded by Assumption 6. Again, Markov’s inequality yields that

P

(
|B| ≥ 2

δ
K2(εn)1/2

)
≤ δ

2
.

It follows that

P (|aT [Φ(β∗)−Ψ(β∗)]| < r) ≥ 1− δ,

where r :=
((

2
δK1

)1/2 + 2
δK2

)
(εn)1/2. Since this result holds simultaneously for all a with

|a| = 1,

P (|Φ(β∗)−Ψ(β∗)| ≤ r) ≥ 1− δ. (7)

Now, assuming |ψq(u)| ≤ C, we see that

E|β̃∗|2 ≤ C2C1p.

So from Markov’s inequality it follows that |β̃∗|2 ≤ K/4 with arbitrarily high probability, pro-
vided K is chosen large enough. Now notice that

|β∗ − Φ(β∗)| ≤ |β̃∗|+ |Ψ(β∗)− Φ(β∗)| ≤
√
K

2
+ r,

on the set |β∗| ≤
√
K with arbitrarily high probability. Since εn → 0, for n sufficiently large r

is smaller than
√
K/2, so that |β∗ − Φ(β∗)| ≤

√
K for |β∗| ≤

√
K. Applying Brouwer’s fixed

point theorem to the function f(β∗) := β∗ − Φ(β∗), we have that Φ(β∗) has a zero β̂∗ such that
|β̂∗| ≤

√
K.

Finally, substituting β̂∗ into (7), we obtain that |β̂∗q − β̃∗q | = oP (1) and the result follows. �

To proceed further, we now need to define an estimator of the asymptotic covariance matrix of
β̂q for the i.n.i.d. situation. Assume that si is a consistent estimator for σi for each i and define
ûi(q) := (yi − xTi β̂q)/si, ψ̂′qi := ψ′q(ûi(q)) and ψ̂qi = ψq(ûi(q)). The estimator that we propose
is based on using the well known sandwich approach to estimate Wn and Vn directly from the
sample data:

V̂ arSAN (β̂q) = (n− p)−1nŴ−1
n V̂nŴ−1

n (8)
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where

Ŵn =
1
n

n∑
i=1

1
s2i
ψ̂′qixix

T
i ,

V̂n =
1
n

n∑
i=1

1
s2i
ψ̂2
qixix

T
i .

This estimator is based on White (1980) and takes into account the stochastic nature of the
regressors, possible heteroskedasticity of the errors and possible non independence of errors and
regressors. Note that the factor (n− p)−1n in equation (8) ensures agreement with expression
(4) when x = 1.

We now show that the covariance matrix estimator (8) is consistent. This requires the following
additional assumption.

ASSUMPTION 10. There exist finite positive constants δ,∆ such that for all i E|xijxik|1+δ <
∆, for j, k = 1, . . . , p.

THEOREM 4. Under Assumptions 4-10,

Ŵ−1
n V̂nŴ−1

n −W−1
n VnW−1

n
P−→ 0.

Proof. Let us first prove the consistency of Ŵn. Its (j, k) component is given by
1
n

∑n
i=1

1
s2i
ψ̂′qixijxik. Notice that

| 1
σ2
i

ψ′qixijxik| ≤
C ′

σ2
MIN

|xijxik| =: m(xi),

with E|m(xi)|1+δ = (C ′/σ2
MIN )1+δE|xijxik|1+δ < +∞ by Assumption 10. From Theorem

A.5 in Hoadley (1971) and thanks to the continuity of ψ′q we have that

sup
β

∣∣∣∣∣ 1n
n∑
i=1

1
σ2
i

ψ′q

(
yi − xTi β

σi

)
xijxik −

1
n

n∑
i=1

1
σ2
i

E

[
ψ′q

(
yi − xTi β

σi

)
xijxik

]∣∣∣∣∣ P−→ 0.

Since β̂q
P−→ βq and si

P−→ σi, it follows from a slight modification of Lemma 2.6 by White

(1980) that |Ŵn −Wn|
P−→ 0. Similarly the convergence of V̂n to Vn can be proved. Since

Wn is uniformly positive definite by Assumption 5, thanks to Proposition 2.30 in White (2001)
we obtain the result. �

As the following Corollary demonstrates, the variance estimator (8) leads to asymptotically
valid tests of linear hypotheses and confidence intervals.

Corollary. Under Assumptions 4-10,
√
nV̂−1/2

n Ŵn(β̂q − βq)
d−→ N(0, Ip)

and

n(β̂q − βq)TŴ−1
n V̂nŴ−1

n (β̂q − βq)
d−→ χ2

p.

Proof. Consequence of Theorems 3 and 4 and Lemma 3.3 by White (1980). �
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Technically, the previous results do not hold for the Huber proposal 2 influence function be-
cause Assumption 8 is not satisfied. The next theorem shows that in fact they still hold.

THEOREM 5. Under Assumptions 4-7, 9 and 10, with ψ(u) = uI(|u| ≤ c) + c ·
sgn(u)I(|u| > c)

Ŵ−1
n V̂nŴ−1

n −W−1
n VnW−1

n
P−→ 0.

Proof. Convergence of V̂n to Vn follows as in Theorem 4. Since in the present case ψ′ is not
continuous we have to proceed differently to prove consistency of Ŵn.
Since |si − σi|

P−→ 0 and σi > σMIN for any i, |1/s2i − 1/σ2
i |

P−→ 0, so that

P

(∣∣∣∣∣ 1n
n∑
i=1

1
s2i
ψ̂′qixix

T
i −

1
n

n∑
i=1

1
σ2
i

ψ̂′qixix
T
i

∣∣∣∣∣ ≥ δ
)
≤ P

(
C ′

n

n∑
i=1

∣∣∣∣ 1
s2i
− 1
σ2
i

∣∣∣∣ |xi|2 ≥ δ
)

≤ C ′ε

δn

n∑
i=1

E|xi|2 + oP (1) ≤ ε∆C ′

δ
+ oP (1),

where we have used Markov’s inequality, Assumption 10 and the fact that |ψ̂′qi| ≤ C ′.
The previous quantity tends to zero for ε→ 0 and n→ +∞. Now notice that ψ̂′qi differs
from ψ′qi only if |yi − xTi βq| ≤ |xTi [β̂q − βq]| or if −σic < yi − xTi βq < xTi [β̂q − βq]− sic
or if xTi [β̂q − βq]− sic < yi − xTi βq < −σic or if σic < yi − xTi βq < xTi [β̂q − βq] + sic or
if xTi [β̂q − βq] + sic < yi − xTi βq < σic. Therefore,

|ψ̂′qi − ψ′qi| ≤ I(|yi − xTi βq| ≤ |xTi [β̂q − βq]|)

+I(−σic < yi − xTi βq < xTi [β̂q − βq]− sic) + I(xTi [β̂q − βq]− sic < yi − xTi βq < −σic)
+I(σic < yi − xTi βq < xTi [β̂q − βq] + sic) + I(xTi [β̂q − βq] + sic < yi − xTi βq < σic).

It follows that for any fixed δ > 0 and any ε > 0

P

(∣∣∣∣∣ 1n
n∑
i=1

1
σ2
i

ψ̂′qixix
T
i −

1
n

n∑
i=1

1
σ2
i

ψ′qixix
T
i

∣∣∣∣∣ ≥ δ
)
≤ P

(
1

nσ2
MIN

n∑
i=1

|xi|2|ψ̂′qi − ψ′qi| ≥ δ

)

≤ P (
1

nσ2
MIN

n∑
i=1

|xi|2{I(|yi − xTi βq| ≤ ε|xi|) + I(−σic < yi − xTi βq < ε|xi| − σic+ cε)

+I(−ε|xi| − σic− cε < yi − xTi βq < −σic) + I(σic < yi − xTi βq < ε|xi|+ σic+ cε)

+I(−ε|xi|+ σic− cε < yi − xTi βq < σic)} ≥ δ) + oP (1)

≤ 1
δσ2

MINn

n∑
i=1

E[|xi|2{I(|yi − xTi βq| ≤ ε|xi|) + I(−σic < yi − xTi βq < ε|xi| − σic+ cε)

+I(−ε|xi| − σic− cε < yi − xTi βq < −σic) + I(σic < yi − xTi βq < ε|xi|+ σic+ cε)

+I(−ε|xi|+ σi − cεc < yi − xTi βq < σic)}] + oP (1),

where the last inequality follows from Markov’s inequality. By the dominated convergence
theorem, the consistency of β̂q and si and the fact that yi is an absolutely continuous random
variable, the previous quantity converges to zero for ε→ 0 and n→ +∞.
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Applying the triangle inequality, we have

|Ŵn −Wn| ≤

∣∣∣∣∣Ŵn −
1
n

n∑
i=1

1
σ2
i

ψ̂′qixix
T
i

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

1
σ2
i

ψ̂′qixix
T
i −

1
n

n∑
i=1

1
σ2
i

ψ′qixix
T
i

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

1
σ2
i

ψ′qixix
T
i −Wn

∣∣∣∣∣ .
Consistency of Ŵn then follows from the law of large numbers. �

4. SIMULATION STUDY

In this Section we provide results from a simulation study that was used to evaluate the large
sample approximations outlined in Sections 2 and 3 and to investigate the performance of the
variance estimators (4) and (8) of the M-quantile regression coefficients. Data are generated
under the following model

yi = 1 + 2xi + ui i = 1, . . . , 1000

with x drawn from a uniform distribution over the interval [0, 1] for each replication. Five differ-
ent settings are considered for the individual effects ui:

(a) Gaussian errors with mean 0 and standard deviation 0.16;
(b) 10% contaminated Gaussian errors where 90% of errors are generated from a normal distribu-

tion with mean 0 and standard deviation 0.16 and the remaining 10% of errors are generated
from a normal distribution with mean 0 and standard deviation 0.8;

(c) heteroschedastic errors where ui = εi(1 +
√

2x) and εis are generated from a normal distri-
bution with mean 0 and standard deviation 0.16;

(d) strong heteroschedastic errors where ui = εi exp{3x} and εis are generated from a normal
distribution with mean 0 and standard deviation 0.16;

(e) Chi-squared errors with 3 degrees of freedom.

The above scenarios will enable us to evaluate the large sample approximations and the per-
formance of the variance estimators both when the assumption of the Gaussian errors holds and
when this assumption is violated. Indeed, the first setting considers a situation of ‘regularly’ noisy
data. The second one, on the contrary, defines a situation of more noisy data with the likely pres-
ence of outlying observations. In the last three settings the assumptions of Gaussian errors model
are violated. A measure of the heteroskedasticity strength is given by λ = max(σ2

i )/min(σ2
i ).

Under scenario (c) λ is equal to 3, corresponding to weak heteroskedasticity, whereas it assumes
the value 20.06 under case (d), denoting strong heteroskedasticity. Each scenario is indepen-
dently simulated T = 5000 times and samples of size n = 100 are selected from the simulated
population, by simple random sampling. For the M-quantile model the Huber proposal 2 influ-
ence function is used with c = 1.345. This value gives reasonably high efficiency in the normal
case - it produces 95% efficiency when the standardized errors are normal - and still offers pro-
tection against outliers (Huber, 1981). As estimate of scale the median absolute deviation (MAD)
of the residuals is taken:

s =
MED{|(yi − xTi β̂q)−MED|yi − xTi β̂q||; i = 1, . . . , n}

0.6745
. (9)
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This estimator is convergent for σ when the error terms are N(0, σ2) (see, for example, Van der
Vaart, 1998). Under settings (c) and (d) the heteroskedasticity is of the form σi = σv−1/2(xi),
where v(·) is a non-negative function. The MAD estimator of σ then becomes

s =
MED{|(yi−xT

i β̂q

v1/2(xi)
)−MED|yi−xT

i β̂q

v1/2(xi)
||; i = 1, . . . , n}

0.6745
,

and the scale σi is estimated by si = sv−1/2(xi).
For each type of distribution and for each estimator’s component β̂k, k = 0, 1 at q =

(0.10, 0.25, 0.50, 0.75, 0.90), Tables 1 and 2 reportr the Monte-Carlo variance,

S2(β̂k) =
1
T

T∑
t=1

(β̂(t)
k − β̄k)

2,

where β̂
(t)
k is the estimated M-quantile coefficient for the tth replication and β̄k =

T−1
∑T

t=1 β̂
(t)
k ;r the estimated variance averaged over the simulations

Ŝ2(β̂k) =
1
T

T∑
t=1

V̂ ar(β̂k);

r the coverage rate (CR%) of nominal 95 per cent confidence intervals and its mean length. The

coverage of these intervals is defined by the number of times the interval βk ± 2
√
V̂ ar(β̂k)

contains the ‘true’ population parameter.

Tables 1 and 2 summarize the results. In particular, Table 1 reports the results for the estima-
tor (4), while Table 2 shows the behaviour of the sandwich-type variance estimator (8). Under
the five scenarios the asymptotic variance estimators of the M-quantile regression coefficients
provide a good approximation to the true variances. In particular, under scenarios (a), (b) and
(e) the two estimators show similar performance in terms of point estimation and coverage rate,
but estimator (8) has wider confidence intervals than the estimator (4). On the other hand, the
sandwich-type variance estimator (8) has better performance than (4) under scenarios (c) and (d).
As expected, the heteroskedasticity of the disturbances of the linear model used to generate the
data in these cases causes (4) to become inconsistent.

We now turn to the examination of asymptotic normality of the M-quantile regression coef-
ficients estimators. Figures 1 and 2 present normal probability plots of these estimators under
the Gaussian and Chi-squared scenarios at quantiles q = (0.25, 0.50, 0.75). The plots for other
cases are not reported here, but are available from the authors upon request. It is observed that
under the four scenarios a normal approximation of the distribution of the M-quantile regression
coefficients estimators is reasonable. This is also confirmed by values W of the Shapiro-Wilk’s
test with a few exceptions. Under the setting based on Chi-squared errors there are some depar-
tures from normality for q = 0.25 and q = 0.75, but they are not severe and we believe that the
normal approximation improves as soon as the sample size increases. This can also be supported
by the fact that the coverage rates of normal confidence intervals for β0 and β1 are about 95%
for all percentiles. Consequently, the construction of confidence intervals based on asymptotic
normality seems to be correct. We therefore conclude that the proposed large sample approxima-
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Table 1. Empirical variances (S2(β̂k)), estimated variances (4) averaged over the simulations
(Ŝ2(β̂k)), coverage rate (CR%) and average lengths of 95% confidence intervals on βk. Sample
size n=100.

tions are suitable for approximate inference based on the estimators of the βq coefficients of the
M-quantile model.
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Table 2. Empirical variances (S2(β̂k)), estimated variances (8) averaged over the simulations
(Ŝ2(β̂k)), coverage rate (CR%) and average lengths of 95% confidence intervals on βk. Sample
size n=100.

5. DISCUSSION

M-quantile regression allows one to investigate the behaviour of the conditional M-quantile
regression functions of a response variable in terms of a set of covariates. Like ordinary quantiles,
the M-quantiles characterize a distribution, and so the M-quantile regression functions lead to a
more complete picture of this relationship. However, little or no work has been done on the
asymptotic properties of the M-quantile regression coefficients estimators and on the estimation
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Fig. 1. Q–Q plots of estimates of βq for q =
0.25, 0.50, 0.75 in the case of Gaussian errors.
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Fig. 2. Q–Q plots of estimates of βq for q =
0.25, 0.50, 0.75 in the case of Chi-squared errors.

of their variances. This is particularly true for the i.n.i.d. case, which is appropriate when there
are gross errors in the data.

In this paper we prove the consistency and asymptotic normality of the M-quantile regression
coefficients estimators for this case. Moreover we propose two estimators of the asymptotic
variance of the M-quantile regression coefficients estimator and we prove their consistency. The
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empirical results described in the previous Section provide empirical support for the asymptotic
theory developed in Sections 2 and 3 and demonstrate that the variance estimators (4) and (8) are
reasonably efficient over a wide range of error distributions.

The variance of the M-quantile regression coefficients could have also been estimated with
a resampling method. In particular, it can be shown that a ‘one-step’ jackknife estimator of the
variance of the M-quantile regression coefficients is asymptotically equivalent to the sandwich
estimator (8). We have evaluated the performance of this ‘one-step’ jackknife estimator and have
observed that it works as well as the sandwich-type variance estimator (8), except for some
extreme quantiles where the ‘one-step’ jackknife estimator showed some under-coverage. For
reasons of space, these results are not reported in the paper. However, they are available from the
authors upon request.

By construction, M-quantile-based estimators are robust against outliers in the distributions
of the random errors. However, the method does not take into account the presence of outliers
in the auxiliary variables. In such cases, the M-quantile estimating equations (6) for βq can be
modified as

n∑
i=1

diψq

(
yi − xTi β

σi

)
xi
σi

= 0, (10)

where di is a diagonal matrix of weight functions d(xi) which allows one to downweight the
outliers in the auxiliary variables when estimating the parameters of the M-quantile model. In
this context, we note that a function of the Mahalanobis distance can be used as the weight
function d(xi) when the x’s are continuous (Sinha, 2004). If the auxiliary variables are discrete,
Mallows weights can be used (see de Jongh et al., 1988).

Recently Pratesi et al. (2009) have extended the M-quantile regression model to nonparametric
penalized spline regression, in the sense that the M-quantile regression functions do not have to
follow any particular functional form, but can be left undefined and estimated from the data. It
could be interesting to explore whether the variance estimators proposed in Sections 2 and 3 can
also be used in this case. Here we note that the asymptotic results would then have to take into
account the penalty term and the number and position of knots use in the spline approximation.
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